Skip to main content

Extracellular Vesicles

  • Chapter
  • First Online:
Essential Current Concepts in Stem Cell Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

Abstract

Extracellular vesicles (EVs) are submicron-sized biological vesicles which can transfer complex information or signals from releasing cells to other cells or tissues in a targeted manner. EVs are released by basically all cell types and are detected in all body fluids. Due to their potential therapeutic and diagnostic potential, the EV research field has gained lots of attention and is growing rapidly especially within the last decade. In this chapter, we will summarize the history behind their discovery and the current knowledge about EV-related functions. Furthermore, we will elaborate on their therapeutic potential with a focus on regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalberts, M., Stout, T. A., & Stoorvogel, W. (2014). Prostasomes: Extracellular vesicles from the prostate. Reproduction, 147, R1–R14.

    Article  CAS  PubMed  Google Scholar 

  • Arslan, F., Lai, R. C., Smeets, M. B., Akeroyd, L., Choo, A., Aguor, E. N., Timmers, L., van Rijen, H. V., Doevendans, P. A., Pasterkamp, G., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Research, 10, 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Benz, E. W., Jr., & Moses, H. L. (1974). Small, virus-like particles detected in bovine sera by electron microscopy. Journal of the National Cancer Institute, 52, 1931–1934.

    Article  PubMed  Google Scholar 

  • Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283, 534–537.

    Article  CAS  PubMed  Google Scholar 

  • Börger, V., Bremer, M., Ferrer-Tur, R., Gockeln, L., Stambouli, O., Becic, A., & Giebel, B. (2017). Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. International Journal of Molecular Sciences, 18, E1450.

    Article  PubMed  CAS  Google Scholar 

  • Bruno, S., Grange, C., Deregibus, M. C., Calogero, R. A., Saviozzi, S., Collino, F., Morando, L., Busca, A., Falda, M., Bussolati, B., et al. (2009). Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. Journal of the American Society of Nephrology: JASN, 20, 1053–1067.

    Article  CAS  PubMed  Google Scholar 

  • Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6, 1445–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084.

    Article  CAS  PubMed  Google Scholar 

  • Chargaff, E., & West, R. (1946). The biological significance of the thromboplastic protein of blood. The Journal of Biological Chemistry, 166, 189–197.

    CAS  PubMed  Google Scholar 

  • Consortium, E.-T., Van Deun, J., Mestdagh, P., Agostinis, P., Akay, O., Anand, S., Anckaert, J., Martinez, Z. A., Baetens, T., Beghein, E., et al. (2017). EV-TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228–232.

    Article  CAS  Google Scholar 

  • Coumans, F. A. W., Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C., Gasecka, A., Hendrix, A., Hill, A. F., et al. (2017). Methodological guidelines to study extracellular vesicles. Circulation Research, 120, 1632–1648.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, A. J. (1975). Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. Journal of the National Cancer Institute, 54, 1137–1148.

    Article  CAS  PubMed  Google Scholar 

  • De Broe, M., Wieme, R., & Roels, F. (1975). Letter: Membrane fragments with koinozymic properties released from villous adenoma of the rectum. Lancet, 2, 1214–1215.

    Article  PubMed  Google Scholar 

  • Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., Grisanti, S., & Gianni, A. M. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    Article  PubMed  Google Scholar 

  • Doeppner, T. R., Herz, J., Gorgens, A., Schlechter, J., Ludwig, A. K., Radtke, S., de Miroschedji, K., Horn, P. A., Giebel, B., & Hermann, D. M. (2015). Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine, 4, 1131–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J., Hole, P., Carr, B., Redman, C. W., Harris, A. L., Dobson, P. J., et al. (2011). Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine, 7, 780–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drommelschmidt, K., Serdar, M., Bendix, I., Herz, J., Bertling, F., Prager, S., Keller, M., Ludwig, A. K., Duhan, V., Radtke, S., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain, Behavior, and Immunity, 60, 220–232.

    Article  CAS  PubMed  Google Scholar 

  • Fais, S., O’Driscoll, L., Borras, F. E., Buzas, E., Camussi, G., Cappello, F., Carvalho, J., Cordeiro da Silva, A., Del Portillo, H., El Andaloussi, S., et al. (2016). Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano, 10, 3886–3899.

    Article  CAS  PubMed  Google Scholar 

  • Galon, J., & Bruni, D. (2019). Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nature Reviews. Drug Discovery, 18(3), 197.

    Article  CAS  PubMed  Google Scholar 

  • Giebel, B., & Helmbrecht, C. (2017). Methods to analyze EVs. Methods in Molecular Biology, 1545, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Gilani, S. I., Weissgerber, T. L., Garovic, V. D., & Jayachandran, M. (2016). Preeclampsia and extracellular vesicles. Current Hypertension Reports, 18, 68–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorgens, A., Bremer, M., Ferrer-Tur, R., Murke, F., Tertel, T., Horn, P. A., Thalmann, S., Welsh, J. A., Probst, C., Guerin, C., et al. (2019). Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. Journal of Extracellular Vesicles, 8, 1587567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gould, S. J., & Raposo, G. (2013). As we wait: Coping with an imperfect nomenclature for extracellular vesicles. Journal of Extracellular Vesicles, 2.

    Google Scholar 

  • Harding, C., Heuser, J., & Stahl, P. (1983). Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology, 97, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262, 9412–9420.

    CAS  PubMed  Google Scholar 

  • Kim, D. K., Lee, J., Kim, S. R., Choi, D. S., Yoon, Y. J., Kim, J. H., Go, G., Nhung, D., Hong, K., Jang, S. C., et al. (2015). EVpedia: A community web portal for extracellular vesicles research. Bioinformatics, 31, 933–939.

    Article  CAS  PubMed  Google Scholar 

  • Kordelas, L., Rebmann, V., Ludwig, A. K., Radtke, S., Ruesing, J., Doeppner, T. R., Epple, M., Horn, P. A., Beelen, D. W., & Giebel, B. (2014). MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia, 28, 970–973.

    Article  CAS  PubMed  Google Scholar 

  • Lai, R. C., Arslan, F., Lee, M. M., Sze, N. S., Choo, A., Chen, T. S., Salto-Tellez, M., Timmers, L., Lee, C. N., El Oakley, R. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4, 214–222.

    Article  CAS  PubMed  Google Scholar 

  • Lener, T., Gimona, M., Aigner, L., Borger, V., Buzas, E., Camussi, G., Chaput, N., Chatterjee, D., Court, F. A., Del Portillo, H. A., et al. (2015). Applying extracellular vesicles based therapeutics in clinical trials – An ISEV position paper. Journal of Extracellular Vesicles, 4, 30087.

    Article  PubMed  CAS  Google Scholar 

  • Lotvall, J., Hill, A. F., Hochberg, F., Buzas, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., et al. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles, 3, 26913.

    Article  PubMed  Google Scholar 

  • Ludwig, A. K., & Giebel, B. (2012). Exosomes: Small vesicles participating in intercellular communication. The International Journal of Biochemistry & Cell Biology, 44, 11–15.

    Article  CAS  Google Scholar 

  • Ludwig, A.-K., De Miroschedji, K., Doeppner, T. R., Börger, V., Ruesing, J., Rebmann, V., Durst, S., Jansen, S., Bremer, M., Behrmann, E., et al. (2018). Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. Journal of Extracellular Vesicles, 7, 1528109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290, 1779–1782.

    Article  CAS  PubMed  Google Scholar 

  • Monguio-Tortajada, M., Lauzurica-Valdemoros, R., & Borras, F. E. (2014). Tolerance in organ transplantation: From conventional immunosuppression to extracellular vesicles. Frontiers in Immunology, 5, 416.

    PubMed  PubMed Central  Google Scholar 

  • Munoz-Elias, G., Woodbury, D., & Black, I. B. (2003). Marrow stromal cells, mitosis, and neuronal differentiation: Stem cell and precursor functions. Stem Cells, 21, 437–448.

    Article  PubMed  Google Scholar 

  • Nair, S., & Salomon, C. (2018). Extracellular vesicles and their immunomodulatory functions in pregnancy. Seminars in Immunopathology, 40, 425–437.

    Article  CAS  PubMed  Google Scholar 

  • Ophelders, D. R., Wolfs, T. G., Jellema, R. K., Zwanenburg, A., Andriessen, P., Delhaas, T., Ludwig, A. K., Radtke, S., Peters, V., Janssen, L., et al. (2016). Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Translational Medicine, 5, 754–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, B. T., & Johnstone, R. M. (1983). Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor. Cell, 33, 967–978.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: Exosomes, microvesicles, and friends. The Journal of Cell Biology, 200, 373–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J., & Geuze, H. J. (1996). B lymphocytes secrete antigen-presenting vesicles. The Journal of Experimental Medicine, 183, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., & Ratajczak, M. Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20, 847–856.

    Article  CAS  PubMed  Google Scholar 

  • Shao, H., Im, H., Castro, C. M., Breakefield, X., Weissleder, R., & Lee, H. (2018). New technologies for analysis of extracellular vesicles. Chemical Reviews, 118, 1917–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova, V., Ludwig, A. K., Hornung, S., Rotan, O., Horn, P. A., Epple, M., & Giebel, B. (2011). Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces. B, Biointerfaces, 87, 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Stegmayr, B., & Ronquist, G. (1982). Promotive effect on human sperm progressive motility by prostasomes. Urological Research, 10, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Thery, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., et al. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 7, 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  • Timmers, L., Lim, S. K., Arslan, F., Armstrong, J. S., Hoefer, I. E., Doevendans, P. A., Piek, J. J., El Oakley, R. M., Choo, A., Lee, C. N., et al. (2007). Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Research, 1, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, J. A., Holloway, J. A., Wilkinson, J. S., & Englyst, N. A. (2017). Extracellular vesicle flow cytometry analysis and standardization. Frontiers in Cell and Development Biology, 5, 78.

    Article  Google Scholar 

  • Wiklander, O. P. B., Bostancioglu, R. B., Welsh, J. A., Zickler, A. M., Murke, F., Corso, G., Felldin, U., Hagey, D. W., Evertsson, B., Liang, X. M., et al. (2018). Systematic methodological evaluation of a multiplex bead-based flow cytometry assay for detection of extracellular vesicle surface signatures. Frontiers in Immunology, 9, 1326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wiklander, O. P. B., Brennan, M. A., Lotvall, J., Breakefield, X. O., & El Andaloussi, S. (2019). Advances in therapeutic applications of extracellular vesicles. Science Translational Medicine, 11, eaav8521.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, P. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology, 13, 269–288.

    Article  CAS  PubMed  Google Scholar 

  • Yanez-Mo, M., Siljander, P. R., Andreu, Z., Zavec, A. B., Borras, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., et al. (2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 4, 27066.

    Article  PubMed  Google Scholar 

  • Zabeo, D., Cvjetkovic, A., Lässer, C., Schorb, M., Lötvall, J., & Höög, J. L. (2017). Exosomes purified from a single cell type have diverse morphology. Journal of Extracellular Vesicles, 6, 1329476–1329476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Görgens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Görgens, A., Giebel, B. (2020). Extracellular Vesicles. In: Brand-Saberi, B. (eds) Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-33923-4_13

Download citation

Publish with us

Policies and ethics