Advertisement

Brazilian Presidential Elections in the Era of Misinformation: A Machine Learning Approach to Analyse Fake News

  • Jairo L. Alves
  • Leila WeitzelEmail author
  • Paulo Quaresma
  • Carlos E. Cardoso
  • Luan Cunha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

As Brazil faced one of its most important elections in recent times, the fact-checking agencies handled the same kind of misinformation that has attacked voting in the US. However, stopping fake content before it goes viral remains an intense challenge. This paper examines a sample database of the 2018 Brazilian election articles shared by Brazilians over social media platforms. We evaluated three different configuration of Long Short-Term Memory. Experiment results indicate that the 3-layer Deep BiLSTMs with trainable word embeddings configuration was the best structure for fake news detection. We noticed that the developments in deep learning could potentially benefit fake news research.

Keywords

Fake news Machine learning Long Short-Term Memory Word embeddings Deep learning Recurrent neural network 

References

  1. 1.
    Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.-C., Flammini, A., Menczer, F.: The spread of low-credibility content by social bots. Nat. Commun. 9(1), 4787 (2018)CrossRefGoogle Scholar
  2. 2.
    Vlachos, A., Riedel, S.: Fact checking: task definition and dataset construction. In: Fact Checking: Task Definition and Dataset Construction (2014)Google Scholar
  3. 3.
    Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)CrossRefGoogle Scholar
  4. 4.
    Golbeck, J., et al.: Fake news vs satire: a dataset and analysis. In: Proceedings of the 10th ACM Conference on Web Science, Amsterdam, Netherlands (2018)Google Scholar
  5. 5.
    Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection on social media: a data mining perspective. SIGKDD Explor. Newsl. 19(1), 22–36 (2017)CrossRefGoogle Scholar
  6. 6.
    Tandoc, E.C., Lim, Z.W., Ling, R.: Defining “Fake News”. Digital J. 6(2), 137–153 (2018)CrossRefGoogle Scholar
  7. 7.
    Fallis, D.: A functional analysis of disinformation. In: A Functional Analysis of Disinformation, iSchools edn (2014)Google Scholar
  8. 8.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  9. 9.
    Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)Google Scholar
  10. 10.
    Ferrara, E.: Disinformation and social bot operations in the run up to the 2017 French presidential election (2017)Google Scholar
  11. 11.
    Rashkin, H., Choi, E., Jang, J.Y., Volkova, S., Choi, Y.: Truth of varying shades: analyzing language in fake news and political fact-checking. In: Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking (2017)Google Scholar
  12. 12.
    Hanselowski, A., et al.: A retrospective analysis of the fake news challenge stance detection task. arXiv preprint arXiv:1806.05180 (2018)
  13. 13.
    Lazer, D.M., et al.: The science of fake news. Science 359(6380), 1094–1096 (2018)CrossRefGoogle Scholar
  14. 14.
    Vosoughi, S., Roy, D., Ara, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)CrossRefGoogle Scholar
  15. 15.
    Zannettou, S., Caulfield, T., De Cristofaro, E., Sirivianos, M., Stringhini, G., Blackburn, J.: Disinformation warfare: understanding state-sponsored trolls on twitter and their influence on the web. arXiv preprint arXiv:1801.09288 (2018)
  16. 16.
    Wang, W.Y.: “Liar, Liar Pants on Fire”: a new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648 (2017)
  17. 17.
    Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Singapore (2017)Google Scholar
  18. 18.
    Pfohl, S.R.: Stance detection for the fake news challenge with attention and conditional encoding. In: Stance Detection for the Fake News Challenge with Attention and Conditional Encoding (2017)Google Scholar
  19. 19.
    Ajao, O., Bhowmik, D., Zargari, S.: Fake news identification on twitter with hybrid CNN and RNN models. Proceedings of the 9th International Conference on Social Media and Society, Copenhagen, Denmark (2018)Google Scholar
  20. 20.
    Chollet, F.: ‘Keras’. In: Book Keras (2015)Google Scholar
  21. 21.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. In: TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (2016)Google Scholar
  22. 22.
    Appleyard, J., Kocisky, T., Blunsom, P.: Optimizing performance of recurrent neural networks on GPUs. In: Optimizing Performance of Recurrent Neural Networks on GPUs (2016)Google Scholar
  23. 23.
    Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)
  24. 24.
    Lei, T., Zhang, Y., Wang, S.I., Dai, H., Artzi, Y.: Simple recurrent units for highly parallelizable recurrence. In: Simple Recurrent Units for Highly Parallelizable Recurrence, pp. 4470–4481 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jairo L. Alves
    • 1
  • Leila Weitzel
    • 1
    Email author
  • Paulo Quaresma
    • 2
  • Carlos E. Cardoso
    • 1
  • Luan Cunha
    • 1
  1. 1.Fluminense Federal UniversityRio de JaneiroBrazil
  2. 2.Universidade de ÉvoraÉvora 17Portugal

Personalised recommendations