Advertisement

Performance of Different Average Methods for the Automatic Detection of Evoked Potentials

  • Idileisy Torres-Rodríguez
  • Carlos Ariel Ferrer-RiesgoEmail author
  • Juan Carlos Oliva Pérez
  • Alberto Taboada-Crispi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

The evoked potentials can be auditory, visual or somatosensory. Noise reduction is the first step in most biomedical signal processing systems. The quality and accuracy of the rest of the operations carried out on the signal depend to a large extent on the quality of the noise reduction algorithms that have been used in the preprocessing of the signal. The method commonly used to enhance the signal of interest is the coherent average, however, this technique has some limitations that justify the search for alternatives to detect or extract the characteristics of these signals. The weighted average is a possible alternative; however, this is still not appropriate enough when the signal may have outliers within the epoch. Trimmed average techniques have a better solution when in the presence of impulsive noise. The modified trimmed average is adapted for use in auditory evoked potentials. In this work, we compare different techniques of trimmed average, with the weighted average and the coherent average; using quality measures in the frequency domain for detect Auditory Brainstem Evoked Potentials. The results showed that the proposed method and his variants are superior to the rest of the used ones. The Q-Sample Modified measure offers the best result.

Keywords

Auditory evoked potentials Ensemble average Weighted average Trimmed average Q-sample uniform Q-Sample Modified Watson Q-sample 

References

  1. 1.
    Sharma, A., Dorman, M.F., Kral, A.: The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear. Res. 203(1–2), 134–143 (2005)CrossRefGoogle Scholar
  2. 2.
    Eggermont, J.J.: On the rate of maturation of sensory evoked potentials. Electroencephalogr. Clin. Neurophysiol. 70(4), 293–305 (1988)CrossRefGoogle Scholar
  3. 3.
    Kraus, N., Nicol, T.: Auditory evoked potentials. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds.) Encyclopedia of Neuroscience. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-29678-2CrossRefGoogle Scholar
  4. 4.
    Sornmo, L., Laguna, P.: Bioelectrical Signal Processing in Cardiac and Neural Applications (2005)Google Scholar
  5. 5.
    Stapells, D.R.: Frequency-specific threshold assessment in young infants using the transient ABR and the brainstem ASSR. In: Comprehensive Handbook of Pediatric Audiology, pp. 409–448 (2011)Google Scholar
  6. 6.
    Suárez, A., De Armas, J.L., Aznielle, T., Charroó, L., Hernández, R.: SenseWitness: Un nuevo software para potenciales evocados (2003)Google Scholar
  7. 7.
    Nodarse, E.M., et al.: Cribado auditivo neonatal con potenciales evocados auditivos de estado estable a múltiples frecuencias. Acta Otorrinolaringol. Esp. 62(2), 87–94 (2011)CrossRefGoogle Scholar
  8. 8.
    Torres, I.: Estimadores Robustos de Promedio para la Detección de Potenciales Relacionados con Eventos. Universidad Central “Marta Abreu” de Las Villas (2014)Google Scholar
  9. 9.
    Elamir, E.A.H., Seheult, A.H.: Trimmed L-moments. Comput. Stat. Data Anal. 43(3), 299–314 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leonowicz, Z., Karvanen, J., Shishkin, S.L.: Trimmed estimators for robust averaging of event-related potentials. J. Neurosci. Methods 142(1), 17–26 (2005)CrossRefGoogle Scholar
  11. 11.
    Hampel, F., Ronchetti, E., Rousseeuw, P., Stahel, W.: Robust Statistics: The Approach Based on Influence Functions. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  12. 12.
    Valderrama, J.T., Alvarez, I., De La Torre, A., Segura, J.C., Sainz, M., Vargas, J.L.: A portable, modular, and low cost auditory brainstem response recording system including an algorithm for automatic identification of responses suitable for hearing screening. In: IEEE EMBS Special Topics Conference on Point-of-Care Healthcare Technologies Synergy Towards Better Global Healthcare, PHT 2013, pp. 180–183 (2013)Google Scholar
  13. 13.
    Laciar, E., Jane, R.: An improved weighted signal averaging method for high-resolution ECG signals, pp. 69–72 (2001)Google Scholar
  14. 14.
    Chesnaye, M.A., Bell, S.L., Harte, J.M., Simpson, D.M.: Objective measures for detecting the auditory brainstem response: comparisons of specificity, sensitivity and detection time. Int. J. Audiol. 57, 1–11 (2018)CrossRefGoogle Scholar
  15. 15.
    Lins, O., Picton, P., Picton, T.: Auditory steady-state responses to tones amplitude-modulated at 80–110 Hz. J. Acoust. Soc. Am. 97, 3051–3063 (1995)CrossRefGoogle Scholar
  16. 16.
    Congedo, M., Korczowski, L., Delorme, A., Lopes da Silva, F.: Spatio-temporal common pattern: a companion method for ERP analysis in the time domain. J. Neurosci. Methods 267, 74–88 (2016)CrossRefGoogle Scholar
  17. 17.
    Stürzebecher, E., Cebulla, M., Wernecke, K.D.: Objective response detection in the frequency domain: comparison of several q-sample tests. Audiol. Neuro-Otology 4(1), 2–11 (1999)CrossRefGoogle Scholar
  18. 18.
    Taboada-Crispi, A., Lorenzo-Ginori, J.: Adaptive line enhancing plus modified signal averaging for ventricular late potential detection. Electronics 35, 1293–1295 (1999)Google Scholar
  19. 19.
    Heckenlively, J., Arden, G.: Principles and Practice of Clinical Electrophysiology of Vision. MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  20. 20.
    Leski, J.M.: Robust weighted averaging. IEEE Trans. Biomed. Eng. 49(8), 796–804 (2002)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Mijares, E., et al.: Sensitivity of the automated auditory brainstem response in neonatal hearing screening. Pediatrics 3(3), 117–128 (2014)Google Scholar
  23. 23.
    Da Silva, I.G.A.: Objective estimation of loudness growth using tone burst evoked auditory responses. Diss. Abstr. Int. B Sci. Eng. 70(8), 4987 (2010)Google Scholar
  24. 24.
    Paradis, J.: The development of English as a second language with and without specific language impairment: clinical implications. J. Speech Lang. Hear. Res. 59(2), 171–182 (2016)CrossRefGoogle Scholar
  25. 25.
    Pander, T.: A new approach to robust, weighted signal averaging. Biocybern. Biomed. Eng. 35(4), 317–327 (2015)CrossRefGoogle Scholar
  26. 26.
    Levit, Y., Himmelfarb, M., Dollberg, S.: Sensitivity of the automated auditory brainstem response in neonatal hearing screening. Pediatrics 136(3), e641–e647 (2015)CrossRefGoogle Scholar
  27. 27.
    Rodrigues, G.R.I., Ramos, N., Lewis, D.R.: Comparing auditory brainstem responses (ABRs) to toneburst and narrow band CE-chirp® in young infants. Int. J. Pediatr. Otorhinolaryngol. 77(9), 1555–1560 (2013)CrossRefGoogle Scholar
  28. 28.
    Kotas, M., Pander, T., Leski, J.M.: Averaging of nonlinearly aligned signal cycles for noise suppression. Biomed. Signal Process. Control 21, 157–168 (2015)CrossRefGoogle Scholar
  29. 29.
    Pander, T., Pietraszek, S., Przybyła, T.: A novel approach to robust weighted averaging of auditory evoked potentials. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, Volume 4. AISC, vol. 284, pp. 321–332. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06596-0_30CrossRefGoogle Scholar
  30. 30.
    Valderrama, J.T., et al.: Automatic quality assessment and peak identification of auditory brainstem responses with fitted parametric peaks. Comput. Methods Programs Biomed. 114(3), 262–275 (2014)CrossRefGoogle Scholar
  31. 31.
    Berninger, E., Olofsson, A., Leijon, A.: Analysis of click-evoked auditory brainstem responses using time domain cross-correlations between interleaved responses. Ear Hear. 35(3), 318–329 (2014)CrossRefGoogle Scholar
  32. 32.
    Tsurukiri, J., Nagata, K., Kumasaka, K., Ueno, K., Ueno, M.: Middle latency auditory evoked potential index for prediction of post-resuscitation survival in elderly populations with out-of-hospital cardiac arrest. Signa Vitae 13, 80–83 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Informatics Research CenterUniversidad Central “Marta Abreu” de Las Villas, UCLVSanta ClaraCuba
  2. 2.Electronic and Telecommunications DepartmentUniversidad Central “Marta Abreu” de Las Villas, UCLVSanta ClaraCuba

Personalised recommendations