Advertisement

Detecting Steading Conversational Groups on an Still Image: A Single Relational Fuzzy Approach

  • Elvis Ferrera-CedeñoEmail author
  • Niusvel Acosta-Mendoza
  • Andrés Gago-Alonso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

The small group detection has become one of the most important step in crow scene analysis, which has several application in surveillance-video (i.e. for detecting, preventing and predicting dangerous situations). A Steading Conversational Group (a.k.a. F-Formation) is a kind of small group, where their stationary people interact through social signals (i.e. non-verbal expressions). The proposed state-of-the-art methods have reported encouraging results; however, they are based on complex theories. Moreover, these methods have had difficulties for rehearsing and high computational complexity. In this paper, we propose a new method for detecting F-Formation in an image. We introduce a new representation and clustering method, basing our solution on the fuzzy relation theory. The performance of our proposal is evaluated and compared against other reported methods over a synthetic and two real-world databases. The experimental results show the effectiveness of our proposal.

Keywords

F-Formation detection Small groups Surveillance-video Fuzzy relations 

References

  1. 1.
    Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image Vis. Comput. 27(12), 1743–1759 (2009)CrossRefGoogle Scholar
  2. 2.
    Li, T., Chang, H., Wang, M., Ni, B., Hong, R., Yan, S.: Crowded scene analysis: a survey. IEEE Trans. Circ. Syst. Video Technol. 25(3), 367–386 (2015)CrossRefGoogle Scholar
  3. 3.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)CrossRefGoogle Scholar
  4. 4.
    Musse, S.R., Thalmann, D.: A model of human crowd behavior : group inter-relationship and collision detection analysis. In: Thalmann, D., van de Panne, M. (eds.) Computer Animation and Simulation 1997. Eurographics. Springer, Vienna (1997).  https://doi.org/10.1007/978-3-7091-6874-5_3CrossRefGoogle Scholar
  5. 5.
    Shao, J., Loy, C., Wang, X.: Scene-independent group profiling in crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2219–2226 (2014)Google Scholar
  6. 6.
    Cosar, S., Donatiello, G., Bogorny, V., Gárate, C., Alvares, L.O., Brémond, F.: Toward abnormal trajectory and event detection in video surveillance. IEEE Trans. Circuits Syst. Video Techn. 27(3), 683–695 (2017)CrossRefGoogle Scholar
  7. 7.
    Liu, C., Wang, G., Ning, W., Lin, X., Li, L., Liu, Z.: Anomaly detection in surveillance video using motion direction statistics. In: Proceedings of the International Conference on Image Processing, ICIP 2010, 26–29 September 2010, Hong Kong, China, pp. 717–720 (2010)Google Scholar
  8. 8.
    Kendon, A.: Spacing and orientation in co-present interaction. In: Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A. (eds.) Development of Multimodal Interfaces: Active Listening and Synchrony. LNCS, vol. 5967, pp. 1–15. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12397-9_1CrossRefGoogle Scholar
  9. 9.
    Cristani, M., et al.: Social interaction discovery by statistical analysis of F-formations. In: BMVC, vol. 2, p. 4(2011)Google Scholar
  10. 10.
    Setti, F., Lanz, O., Ferrario, R., Murino, V., Cristani, M.: Multi-scale F-formation discovery for group detection. In: 2013 IEEE International Conference on Image Processing, pp. 3547–3551. IEEE (2013)Google Scholar
  11. 11.
    Zhang, L., Hung, H.: Beyond F-formations: Determining social involvement in free standing conversing groups from static images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1086–1095 (2016)Google Scholar
  12. 12.
    Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)CrossRefGoogle Scholar
  13. 13.
    West, D.B., et al.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2001)Google Scholar
  14. 14.
    Hung, H., Kröse, B.: Detecting F-formations as dominant sets. In: Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 231–238. ACM (2011)Google Scholar
  15. 15.
    Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: A game-theoretic probabilistic approach for detecting conversational groups. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 658–675. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16814-2_43CrossRefGoogle Scholar
  16. 16.
    Sigmund, K.: Introduction to evolutionary game theory. In: Sigmund, K., (ed.) Evolutionary Game Dynamics, vol. 69, pp. 1–26 (2011)Google Scholar
  17. 17.
    Ferrera, E., Acosta, N., Alonso, A., García, E.: Detecting free standing conversational group in video using fuzzy relations. INFORMATICA 30(1), 21–32 (2019)CrossRefGoogle Scholar
  18. 18.
    Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hall, E.T.: The Hidden Dimension. New York (1966) Google Scholar
  20. 20.
    Lanz, O.: Approximate Bayesian multibody tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1436–1449 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elvis Ferrera-Cedeño
    • 1
    Email author
  • Niusvel Acosta-Mendoza
    • 2
  • Andrés Gago-Alonso
    • 2
  1. 1.DATYSSanta ClaraCuba
  2. 2.Academia de Ciencias de CubaHabana Vieja, HavanaCuba

Personalised recommendations