Advertisement

Stacking Fingerprint Matching Algorithms for Latent Fingerprint Identification

  • Danilo Valdes-RamirezEmail author
  • Miguel Angel Medina-Pérez
  • Raúl Monroy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11896)

Abstract

Automatic latent fingerprint identification is still challenging for biometric researchers. One infrequently explored approach for improving the identification rate involves stacking latent fingerprint identification algorithms with a supervised classification algorithm, instead of using a weighted sum or a product of likelihood ratio. A stacking approach fuses the result provided by different base algorithms to achieve higher performance than each individual algorithm. Latent fingerprints present different qualities, causing deviations between the identification rates of various algorithms. Thus, we propose stacking latent fingerprint identification algorithms using a supervised classifier. We use two different minutia descriptors with a global matching algorithm independent of the local matching of the minutia descriptor. Our stacking method improves the identification rate of each base algorithm by \(2\%\) when comparing the fingerprints in the database NIST SD27. Furthermore, our proposal achieves a \(73.26\%\) rank-1 identification rate when comparing 258 samples in the database NIST SD27 against 29,258 references, and \(68.99\%\) against 100,000 references.

Keywords

Latent fingerprint identification Match score fusion Minutia descriptor stacking 

References

  1. 1.
    Cao, K., Jain, A.K.: Automated latent fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 788–800 (2019)CrossRefGoogle Scholar
  2. 2.
    Cao, K., Jain, A.K.: Latent fingerprint recognition: role of texture template. In: 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–9. IEEE (2019)Google Scholar
  3. 3.
    Cao, K., Yang, X., Tian, J., Zhang, Y., Li, P., Tao, X.: Fingerprint matching based on neighboring information and penalized logistic regression. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 617–626. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01793-3_63CrossRefGoogle Scholar
  4. 4.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2128–2141 (2010)CrossRefGoogle Scholar
  5. 5.
    Feng, J.: Combining minutiae descriptors for fingerprint matching. Pattern Recogn. 41(1), 342–352 (2008)CrossRefGoogle Scholar
  6. 6.
    Garris, M.D.: NIST special database 27: fingerprint minutiae from latent and matching tenprint images. US Department of Commerce, National Institute of Standards and Technology (2000)Google Scholar
  7. 7.
    González-Soler, L.J., Chang, L., Hernández-Palancar, J., Pérez-Suárez, A., Gomez-Barrero, M.: Fingerprint presentation attack detection method based on a bag-of-words approach. In: Mendoza, M., Velastín, S. (eds.) CIARP 2017. LNCS, vol. 10657, pp. 263–271. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75193-1_32CrossRefGoogle Scholar
  8. 8.
    Hernández-Palancar, J., Munoz-Briseno, A., Gago-Alonso, A.: Using a triangular matching approach for latent fingerprint and palmprint identification. Int. J. Pattern Recogn. Artif. Intell. 28(07), 1460004 (2014)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K., Feng, J.: Latent fingerprint matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 88–100 (2011)CrossRefGoogle Scholar
  10. 10.
    Jea, T.Y., Govindaraju, V.: A minutia-based partial fingerprint recognition system. Pattern Recogn. 38(10), 1672–1684 (2005)CrossRefGoogle Scholar
  11. 11.
    Jeyanthi, S., Uma Maheswari, N., Venkatesh, R.: Neural network based automatic fingerprint recognition system for overlapped latent images. J. Intell. Fuzzy Syst. 28(6), 2889–2899 (2015)CrossRefGoogle Scholar
  12. 12.
    Krish, R.P., Fierrez, J., Ramos, D., Alonso-Fernandez, F., Bigun, J.: Improving automated latent fingerprint identification using extended minutia types. Inf. Fus. 50, 9–19 (2019)CrossRefGoogle Scholar
  13. 13.
    Loyola-González, O., Martínez-Trinidad, J.F., Ariel Carrasco-Ochoa, J., García-Borroto, M.: Effect of class imbalance on quality measures for contrast patterns: an experimental study. Inf. Sci. 374, 179–192 (2016)CrossRefGoogle Scholar
  14. 14.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-1-84882-254-2CrossRefzbMATHGoogle Scholar
  15. 15.
    Medina-Pérez, M.A., García-Borroto, M., Gutierrez-Rodríguez, A.E., Altamirano-Robles, L.: Improving fingerprint verification using minutiae triplets. Sensors 12(3), 3418–3437 (2012)CrossRefGoogle Scholar
  16. 16.
    Medina-Pérez, M.A., Moreno, A.M., Ballester, M.A.F., García-Borroto, M., Loyola-González, O., Altamirano-Robles, L.: Latent fingerprint identification using deformable minutiae clustering. Neurocomputing 175, 851–865 (2016)CrossRefGoogle Scholar
  17. 17.
    Paulino, A.A., Feng, J., Jain, A.K.: Latent fingerprint matching using descriptor-based hough transform. IEEE Trans. Inf. Forensics Secur. 8(1), 31–45 (2013)CrossRefGoogle Scholar
  18. 18.
    Sankaran, A., Dhamecha, T.I., Vatsa, M., Singh, R.: On matching latent to latent fingerprints. In: International Joint Conference on Biometrics (IJCB), pp. 1–6 (2011)Google Scholar
  19. 19.
    Sankaran, A., Vatsa, M., Singh, R.: Hierarchical fusion for matching simultaneous latent fingerprint. In: IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 377–382. IEEE (2012)Google Scholar
  20. 20.
    Shi, Z., Govindaraju, V.: Robust fingerprint matching using spiral partitioning scheme. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 647–655. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01793-3_66CrossRefGoogle Scholar
  21. 21.
    Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855. ACM (2013)Google Scholar
  22. 22.
    Valdes-Ramirez, D., et al.: A review of fingerprint feature representations and their applications for latent fingerprint identification: trends and evaluation. IEEE Access 7, 48484–48499 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tecnologico de MonterreySchool of Science and EngineeringAtizapánMexico
  2. 2.Department of Computer SciencesUniversidad de Ciego de ÁvilaCiego de ÁvilaCuba

Personalised recommendations