Advertisement

Monitor the Land Use Change and Prediction Using CA-Markov Model in Li Pe Island, Satun Province, Thailand

  • Katawut WaiyasusriEmail author
  • Nayot Kulpanich
  • Morakot Worachairungreung
  • Pornperm Sae-ngow
Conference paper
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

Li Pe island is situated on the border of the Tarutao National Marine Park which is one of beautiful seaside tourist attractions. Current tourism in Li Pe island has been greatly developed leap forward due to biological diversity and beautiful seaside nature based attractions. The purpose of this study to generate the land use multi-temporal information during 1990–2014 and to then apply the CA-Markov model to simulate the past land use patterns and to predict future land use patterns over the next two decades (2028). The results revealed change detection for the land use classification in 1990–2017. It could be seen that resorts, villages, commercial and services area have increased by 0.36 km2, 0.22 km2, 0.06 km2 respectively whereas the size of forest and cultivated land have declined by 0.98 km2 and 0.22 km2, respectively. The 2028 land use map shows the predicted trend of resort and village area expansion to western part of the island along Sunset beach, while land use in eastern part near Sunrise beach area has been changed to tourism business and commercial activities.

Keywords

Li Pe Island Land use change CA-Markov model 

References

  1. 1.
    Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., Lambin, E.: Digital change detection methods in ecosystem monitoring. Int. J. Remote Sensing 25, 1565–1596 (2004)CrossRefGoogle Scholar
  2. 2.
    Xian, G., Homer, C., Fry, J.: Updateing the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection method. Remote Sensing Environ. 113, 1133–1147 (2009)CrossRefGoogle Scholar
  3. 3.
    Gilani, H., Shrestha, H.L., Murthy, M., Phuntso, P., Pradhan, S., Bajracharya, B., Shrestha, B.: Decadal land cover change dynamics in Bhutan. J. Environ. Manage. 148, 91–100 (2015)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Huang, X., Yang, H., Zhong, T.: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area – a case study of Guiyang. Habitat Int. 44, 339–348 (2014)CrossRefGoogle Scholar
  5. 5.
    Kanianska, R., Kizekova, M., Novacek, J., Zeman, M.: Land-use and land-cover changes in rural areas during different political systems: a case study of Slovakia from 1782 to 2006. Land Use Policy 36, 554–566 (2014)CrossRefGoogle Scholar
  6. 6.
    Tarutao National Marine Park. https://www.thainationalparks.com/tarutao-national-marine-park. Accessed 8 Feb 2018
  7. 7.
    Mahidol University Project on Education and Research on Environment: Report on preliminary survey of Tarutao National Marine Park, Mahidol University, Bangkok (1974)Google Scholar
  8. 8.
    Groot, J.Y.: Urak Lawoi’ Language and Social History. Prince of Songkla University, Phuket (2012)Google Scholar
  9. 9.
    Pukkalanun, N., Inkapatanakul, W., Piputsitee, C., Chunkao, K.: An analysis of the environmental vulnerability index of a Small Island: Lipe Island, Kho Sarai Sub-District, Mueang District, Satun Province, Thailand. Mod. Appl. Sci. 7(2), 33–38 (2013)CrossRefGoogle Scholar
  10. 10.
    Groot, J.Y.: The legend of To Kiri: unraveling an oral tradition about the homeland of the Urak Lawoi. J. Int. Stud. 1, 79–93 (2011)Google Scholar
  11. 11.
    U.S. Geological Survey. https://earthexplorer.usgs.gov/. Accessed 14 May 2018
  12. 12.
    Waiyasusri, K., Yumuang, S., Chotpantarat, S.: Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environ. Earth Sci. 75, 533 (2016)CrossRefGoogle Scholar
  13. 13.
    Munthali, K.G.; Murayama, Y.: Land use/cover change detection and analysis for Dzalanyama forest reserve, Lilongwe, Malawi. In: International Conference: Spatial Thinking and Geographic Information Sciences, vol. 21, pp. 203–211. Procedia Social and Behavioral Sciences, Tokyo, Japan (2011)CrossRefGoogle Scholar
  14. 14.
    U.S. Geological Survey. https://landsat.usgs.gov/landsat-8. Accessed 6 Apr 2018
  15. 15.
    Islam, K., Jashimuddin, M., Nath, B., Nath, R.K.: Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sensing Space Sci. 21, 37–47 (2018)CrossRefGoogle Scholar
  16. 16.
    Bake, N., Weindorf, D.C., Bahnassy, M.H., Marei, S.M., El-Badawi, M.M.: Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Appl. Geogr. 30, 592–605 (2010)CrossRefGoogle Scholar
  17. 17.
    Rawat, J.S., Biswas, V., Kumar, M.: Changes in land use/cover using geospatial techniques: a case study of Ramnagar town area, district Nainitial, Uttarakhand, India. Egypt. J. Remote Sensing Space Sci. 16, 111–117 (2013)CrossRefGoogle Scholar
  18. 18.
    Kolois, S., Stylios, C.D.: Identification of land cover/land use changes in the greater area of the Preveza peninsula in Greece using Landsat satellite data. Appl. Geogr. 40, 150–160 (2013)CrossRefGoogle Scholar
  19. 19.
    Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation. Wiley, New Jersey (2015)Google Scholar
  20. 20.
    Peng, L., Chen, T., Liu, S.: Spatiotemporal dynamics and drivers of farmland changes in Panxi mountainous region, China. Sustainability 8(11), 1209 (2016)CrossRefGoogle Scholar
  21. 21.
    Markov, A.: Extension of the limit theorems of probability theory to a sum of variables connected in a china. The Notes of the Imperial Academy of Sciences of St. Petersburg, VIII Series. Physio Mathematical College 1(9), 9 (1907)Google Scholar
  22. 22.
    Muller, M.R., Middleton, J.: A Markov model of land-use change dynamics in the Niagara, Ontario, Canada. Landscape Ecol. 9(2), 151–157 (1994)Google Scholar
  23. 23.
    The National Statistical Office of Thailand: Statistical Yearbook Thailand 2017. National Statistical Office, Ministry of Digital Economy and Society, Bangkok (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Katawut Waiyasusri
    • 1
    Email author
  • Nayot Kulpanich
    • 1
  • Morakot Worachairungreung
    • 1
  • Pornperm Sae-ngow
    • 1
  1. 1.Geography and Geo-Informatics Program, Faculty of Humanities and Social SciencesSuan Suandha Rajabhat UniversityBangkokThailand

Personalised recommendations