Advertisement

Testing the Robustness of Attribution Methods for Convolutional Neural Networks in MRI-Based Alzheimer’s Disease Classification

  • Fabian Eitel
  • Kerstin RitterEmail author
  • for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11797)

Abstract

Attribution methods are an easy to use tool for investigating and validating machine learning models. Multiple methods have been suggested in the literature and it is not yet clear which method is most suitable for a given task. In this study, we tested the robustness of four attribution methods, namely gradient * input, guided backpropagation, layer-wise relevance propagation and occlusion, for the task of Alzheimer’s disease classification. We have repeatedly trained a convolutional neural network (CNN) with identical training settings in order to separate structural MRI data of patients with Alzheimer’s disease and healthy controls. Afterwards, we produced attribution maps for each subject in the test data and quantitatively compared them across models and attribution methods. We show that visual comparison is not sufficient and that some widely used attribution methods produce highly inconsistent outcomes.

Keywords

Machine learning Convolutional neural networks MRI Explainability Robustness Attribution methods Alzheimer’s disease 

Notes

Funding

We acknowledge support from the German Research Foundation (DFG, 389563835), the Manfred and Ursula-Müller Stiftung, the Brain & Behavior Research Foundation (NARSAD grant, USA), the Deutsche Multiple Sklerose Gesellschaft (DMSG) Bundesverband e.V. and Charité – Universitätsmedizin Berlin (Rahel-Hirsch scholarship).

References

  1. 1.
    Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31, pp. 9505–9515. Curran Associates, Inc. (2018), http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
  2. 2.
    Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods. arXiv preprint arXiv:1806.08049 (2018)
  3. 3.
    Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015).  https://doi.org/10.1371/journal.pone.0130140CrossRefGoogle Scholar
  4. 4.
    Bakker, R., Tiesinga, P., Kötter, R.: The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13(3), 353–366 (2015)CrossRefGoogle Scholar
  5. 5.
    Böhle, M., Eitel, F., Weygandt, M., Ritter, K.: Layer-wise relevance propagation for explaining deep neural network decisions in MRI-based Alzheimer’s disease classification. Front. Aging Neurosci. 11, 194 (2019).  https://doi.org/10.3389/fnagi.2019.00194. https://www.frontiersin.org/article/10.3389/fnagi.2019.00194CrossRefGoogle Scholar
  6. 6.
    Eitel, F., et al.: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. CoRR (2019). http://arxiv.org/abs/1904.08771
  7. 7.
    Esmaeilzadeh, S., Belivanis, D.I., Pohl, K.M., Adeli, E.: End-to-end Alzheimer’s disease diagnosis and biomarker identification. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 337–345. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00919-9_39CrossRefGoogle Scholar
  8. 8.
    Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y.: Residual and plain convolutional neural networks for 3D brain MRI classification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 835–838, April 2017.  https://doi.org/10.1109/ISBI.2017.7950647
  9. 9.
    Liu, M., Cheng, D., Wang, K., Wang, Y.: The Alzheimer’s disease neuroimaging initiative: multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics 16(3), 295–308 (2018).  https://doi.org/10.1007/s12021-018-9370-4CrossRefGoogle Scholar
  10. 10.
    Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep taylor decomposition. Pattern Recognit. 65, 211–222 (2017).  https://doi.org/10.1016/j.patcog.2016.11.008. http://www.sciencedirect.com/science/article/pii/S0031320316303582CrossRefGoogle Scholar
  11. 11.
    Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018).  https://doi.org/10.1016/j.dsp.2017.10.011. http://www.sciencedirect.com/science/article/pii/S1051200417302385MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rieke, J., Eitel, F., Weygandt, M., Haynes, J.-D., Ritter, K.: Visualizing convolutional networks for MRI-based diagnosis of Alzheimer’s disease. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 24–31. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02628-8_3CrossRefGoogle Scholar
  13. 13.
    Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153. JMLR.org (2017)Google Scholar
  14. 14.
    Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
  15. 15.
    Springenberg, J., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR (Workshop Track) (2015). http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
  16. 16.
    Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML 2017, pp. 3319–3328. JMLR.org (2017). http://dl.acm.org/citation.cfm?id=3305890.3306024
  17. 17.
    Vieira, S., Pinaya, W.H., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017).  https://doi.org/10.1016/J.NEUBIOREV.2017.01.002. https://www.sciencedirect.com/science/article/pii/S0149763416305176CrossRefGoogle Scholar
  18. 18.
    Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_53CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fabian Eitel
    • 1
    • 2
    • 3
  • Kerstin Ritter
    • 1
    • 2
    • 3
    Email author
  • for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  1. 1.Department of Psychiatry and PsychotherapyCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  2. 2.Berlin Center for Advanced NeuroimagingCharité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH)BerlinGermany
  3. 3.Bernstein Center for Computational NeuroscienceBerlinGermany

Personalised recommendations