Advertisement

Competitions of Multi-agent Systems for Teaching Artificial Intelligence

  • Jesús SilvaEmail author
  • Omar Bonerge Pineda Lezama
  • Noel Varela
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)

Abstract

This paper presents an approach based on competitions of multi-agent systems as the basis for teaching advanced topics in Artificial Intelligence. The method was applied in the Cognitive Robotics course with students of the 5th-year in Computer Science from the University of Mumbai in India, in the domain of Soccer. The championships are played between different teams to allow students to assess and compare the results. The motivation that is reached is fundamental for creating interest in the study of Artificial Intelligence techniques and in research. The developed experiences are described, as well as an analysis of the method and its impact for the academy and the research.

Keywords

Education Artificial Intelligence Cognitive Robotics Robot soccer 

References

  1. 1.
    Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innovate: J. Sci. Technol. 5(2), 61–75 (2017)Google Scholar
  2. 2.
    Viloria, A., Lis-Gutierrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching - learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data, DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)Google Scholar
  3. 3.
    Lee, A., Taylor, P., Kalpathy-Cramer, J.: A Tufail machine learning has arrived! Ophthalmology 124, 1726–1728 (2017)CrossRefGoogle Scholar
  4. 4.
    Yao, L.: The present situation and development tendency of higher education quality evaluation in Western Countries, p. 2006. Educ. Beef, Priv (2006)Google Scholar
  5. 5.
    Gregorutti, B., Michel, B., Saint-Pierre, P.: Grouped variable importance with random forests and application to multiple functional data analysis. Comput. Stat. Data Anal. 90, 15–35 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guo, Y., Hastie, T., Tibshirani, R.: Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8(1), 86–100 (2006)CrossRefGoogle Scholar
  7. 7.
    Vásquez, C., Torres-Samuel, M., Viloria, A., Crissien, T., Valera, N., Gaitán-Angulo y, M., Lis-Gutierrez, J.: Visibility of research in universities: the triad producto-researcher-institution. Case: Latin American Contries. de Lectur Notes in Computer Sciencie (INcluding subseries Lectur Motes in Artificial Intelelligent and Lectur Notes in Bioinformatics (2018)Google Scholar
  8. 8.
    Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutierrez, J., Crissien y, T., Valera, N.: Web visibility profiles of Top100 Latin American Universities. de Lectur Notes in Computer Sciencie (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes of Bioinformatics (2018)Google Scholar
  9. 9.
    ARWU: Ranking de Shanghái, [En línea]. http://www.shangairanking.com/ARWU2018.html. Último acceso 01 Dec 2018
  10. 10.
    QS: QS World University Ranking [En línea]. https://www.topuniversities.com/university-rankings/latin-american-university-rankings/2019. Último acceso 01 Dec 2018
  11. 11.
    Scimagooir: Scimago, Scimago Lab, [En línea]. https://www.scimagoir.com/methodology.php. Último acceso 01 June 2019
  12. 12.
    Webometrics: Ranking Web-Webometrics [En línea]. http://www.webometrics.info/es/Latin_America_es. Último acceso 30 Jan 2019
  13. 13.
    Torres-Samuel, M., Vásquez, C., Viloria, A., Hernández-Fernandez y, L., Portillo-Medina, R.: Analysis of patterns in the university Word Rankings Webometrics, Shangai, QS and SIR-Scimago: case Latin American. de Lectur Notes in Computer Science (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes in Bioinformatics (2018)Google Scholar
  14. 14.
    Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutierrez, J., Crissien, T., Valera, N., Cabrera y, D., Gaitán-Angulo, M.: Efficiency analysis of the visibility of Latin American universities and theri impact on the Ranking Web. de Lectur Notes in Computer Science (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes in Bioinformatics) (2018)Google Scholar
  15. 15.
    Aguillo, I., Uribe y, A., López, W.: Visibilidad de los investigadores colombianos según sus indicadores en Google Scholar y ResearchGater. Diferernicas y similitudes scon la clasificación oficial del sistema nacional de ciencia-COLCIENCIAS, Rev. Interam. Bibliot, vol. 40, no. 3, pp. 221–230 (2017)Google Scholar
  16. 16.
    Vásquez, C., Torres-Samuel, M., Viloria, A., Lis-Gutierrez, J., Crissien, T., Valera y, N., Cabrera, D.: Cluster of the Latina American universitiers Top100 according to Webometrics 2017. de Lectur Notes in Computer Sciencie (Including subseries Lectur Notes in Artificial Intelligent and Lectur Notes in Bioinformatics) (2018)Google Scholar
  17. 17.
    Melero y, R., Abad, F.: Revistas Open Access: Características, modelos económicos y tendencias, Lámpsakos, pp. 12–23 (2001)Google Scholar
  18. 18.
    Pinto, M., Alonso, J.C.J., Fernández, V., García, C., Garía, J., Gómez, C., Zazo y, F., Doucet, A.-V.: Análisis cualitativo de la visibilidad de la investigación en las Universidaes españolas a través de su página Web, Rev. Esp. Doc. pp. 345–370 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jesús Silva
    • 1
    Email author
  • Omar Bonerge Pineda Lezama
    • 2
  • Noel Varela
    • 3
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras
  3. 3.Universidad de la CostaBarranquilla, AtlánticoColombia

Personalised recommendations