Advertisement

Multiple Linear Regression Analysis of Factors Affecting the Consumption

  • Jesús SilvaEmail author
  • Omar Bonerge Pineda Lezama
  • Darwin Solano
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)

Abstract

Econometrics provides the researchers with methods, theoretical basements, and procedures that allow the formulation and estimation of economic models that explain the study variable during a reference time period, as well as making predictions about the behavior of the studied reality based on the explanatory variables. The entire process, analyzed from econometrics after having formulated and estimated the model, leads to a very important phase: the statistical validation, which helps the researcher to ensure that the model satisfactorily passes a series of tests. These tests will allow the use of the model not just to explain the behavior of the independent variable under study, but to make predictions based on scenarios of occurrence based on those explanatory variables included in the model, offering a theoretical-practical support to formulate policies related to the studied phenomenon. This research aims to generate the first elements to know the private consumption behavior in India in the period from 2012 to 2018.

Keywords

Private consumption Analysis Influence Correlation 

References

  1. 1.
    Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic algorithm with K-means. Knowl.-Based Syst. 71, 345–365 (2014).  https://doi.org/10.1016/j.knosys.2014.08.011CrossRefGoogle Scholar
  2. 2.
    Ramadas, M., Abraham, A., Kumar, S.: FSDE-forced strategy differential evolution used for data clustering. J. King Saud Univ. - Comput. Inf. Sci (2016).  https://doi.org/10.1016/j.jksuci.2016.12.005
  3. 3.
    Vásquez, C., Torres, M., Viloria, A.: Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J. Eng. Appl. Sci. 12(11), 2963–2965 (2017)Google Scholar
  4. 4.
    Torres-Samuel, M., Vásquez, C., Viloria, A., Borrero, T.C., Varela, N., Cabrera, D., Gaitán-Angulo, M., Lis-Gutiérrez, J.P.: Efficiency analysis of the visibility of Latin American Universities and their impact on the ranking web. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data, DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)Google Scholar
  5. 5.
    Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recogn. 35, 1197–1208 (2002)CrossRefGoogle Scholar
  6. 6.
    Tam, H., Ng, S., Lui, A.K., Leung, M.: Improved activation schema on automatic clustering using differential evolution algorithm. IEEE Congr. Evol. Comput. 1749–1756 (2017).  https://doi.org/10.1109/CEC.2017.7969513
  7. 7.
    Duque Oliva, E., Finch Chaparro, C.: Measuring the perception of service quality education by students AAUCTU Duitama. Free Criterion Mag. 10(16) (2012)Google Scholar
  8. 8.
    Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Stat. Data Anal. 96, 12–23 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hong, S., Yang, D., Park, B., et al.: An efficient intra-mode decision method for HEVC. SIViP 10(6), 1–9 (2016)CrossRefGoogle Scholar
  10. 10.
    Kavzoglu, T., Sahin, E.K., Colkesen, I.: An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards 76, 471–496 (2015)CrossRefGoogle Scholar
  11. 11.
    Lei, J., Sun, Z., Gu, Z., Zhu, T., Ling, N., Wu, F.: Simplified search algorithm for explicit wedgelet signalization mode in 3D-HEVC. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, pp. 805–810 (2017)Google Scholar
  12. 12.
    Zhao, J., Zhao, X., Zhang, W., et al.: An efficient depth modeling mode decision algorithm for 3D-HEVC depth map coding. Optik Int. J. Light Electr. Opt. 127(24), 12048–12055 (2016)CrossRefGoogle Scholar
  13. 13.
    Núñez, J.: Universidad, conocimiento, innovación y desarrollo local. Ed. Félix Varela, La Habana (2014)Google Scholar
  14. 14.
    Arzola, C., Sanso, M.: Knowledge Management Program for Local Development (2015)Google Scholar
  15. 15.
    Valle Cuéllar, D.Y.: Evaluación y diseño de estrategias para el logro del Desarrollo Sostenible en el Centro Histórico Urbano de Cienfuegos (2011)Google Scholar
  16. 16.
    Reguant-Álvarez, M., y Otros.: El método Delphi. Recuperado de (2016). http://revistes.ub.edu/index.php/REIRE/article/download/reire2016.9.1916/18093
  17. 17.
    Varela, N., Fernandez, D., Pineda, O., Viloria, A.: Selection of the best regression model to explain the variables that influence labor accident case electrical company. J. Eng. Appl. Sci. 12, 2956–2962 (2017)Google Scholar
  18. 18.
    Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence, ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jesús Silva
    • 1
    Email author
  • Omar Bonerge Pineda Lezama
    • 2
  • Darwin Solano
    • 3
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras
  3. 3.Universidad de la CostaBarranquilla, AtlánticoColombia

Personalised recommendations