Advertisement

Quantitative Analysis of Radio Frequency Spectrum Occupancy for Cognitive Radio Network Deployment

  • Sheetal BordeEmail author
  • Kalyani Joshi
  • Rajendrakumar Patil
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)

Abstract

The increasing demand of wireless applications has increased need for Radio Frequency (RF) spectrum. But the fixed spectrum allocation policy has created a spectrum scarcity issue. In this scenario, cognitive radio is emerging as a promising solution for the effective utilization of the RF spectrum. The spectrum occupancy measurements are one of the preliminary requirements for the exploitation of cognitive radio technology in any geographical location. In this paper, the experimental results for a real time analysis of spectrum utilization of the RF band from 50 MHz to 1930 MHz in Pune city (Maharashtra, India) are discussed and a simple demonstration for utilization of the white space is also presented. Real time measurements are taken using Wideband Spectrum Sensing (WSS) algorithm with the help of Universal Software Radio Peripheral hardware. The results clearly indicate the presence of spectrum white spaces enabling the future scope for cognitive radio network deployment.

Keywords

Cognitive radio NI-USRP 2920 Spectrum occupancy Spectrum sensing Wideband spectrum sensing 

References

  1. 1.
    Agarwal, A., Sengar, A.S., Gangopadhyay, R., Debnath, S.: A real time measurement based spectrum occupancy investigation in north-western India for Cognitive Radio applications. In: Proceedings of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp. 2035–2039 (2016)Google Scholar
  2. 2.
    A Hands-on Introduction to Software Defined Radio with NI USRP and NI LabVIEW. https://lumen.ni.com/nicif/US/GB_EKITNIUSRPLV/content.xhtml
  3. 3.
    Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, D., Yang, J., Wu, J., Tang, H., Huang, M.: Spectrum occupancy analysis based on radio monitoring network. In: Proceedings of the 1st IEEE International Conference on Communications in China (ICCC), Beijing, pp. 739–744 (2012)Google Scholar
  5. 5.
    Getting Started Guide NI USRP-2920. www.ni.com/pdf/manuals/376358a.pdf
  6. 6.
    De, C.K., Kundu, S.: Adaptive decode-and-forward protocol-based cooperative spectrum sensing in cognitive radio. Int. J. Commun. Netw. Distrib. Syst. 14(2), 117–133 (2015)CrossRefGoogle Scholar
  7. 7.
    Hoseini, P.P., Beaulieu, N.C.: An optimal algorithm for wideband spectrum sensing in cognitive radio systems. In: Proceedings of the IEEE International Conference on Communications, Cape Town, South Africa, pp. 1–6 (2010)Google Scholar
  8. 8.
    HANDBOOK Spectrum Monitoring. International Telecommunication Union (ITU), Radiocommunication Bureau (2011). https://www.itu.int/pub/R-HDB-23-2011
  9. 9.
    Jacob, J., Jose, B.R.: Spectrum occupancy measurement and analysis in Kochi-India from a cognitive radio perspective. In: Sixth International Symposium on Embedded Computing and System Design (ISED), Patna, India, pp. 328–333 (2016)Google Scholar
  10. 10.
    Lee, B.M., Song, H., Lee, J.S.: Implementation of a regional spectrum sensing based cognitive radio system for digital TV white space. IETE Tech. Rev. 35(6), 590–598 (2018)CrossRefGoogle Scholar
  11. 11.
    Matinmikko, M., Mustonen, M., Höyhtyä, M., Rauma, T., Sarvanko, H., Mämmelä, A.: Directional and cooperative spectrum occupancy measurements in the 2.4 GHz ISM band. Int. J. Autonom. Adapt. Commun. Syst. 7(4), 339 (2014)Google Scholar
  12. 12.
    McHenry, M.A., Tenhula, P.A., McCloskey, D., Roberson, D.A., Hood, C.S.: Chicago spectrum occupancy measurements & analysis and a long-term studies proposal. In: Proceedings of the Workshop on Technology and Policy for Accessing Spectrum (TAPAS), Boston, USA (2006)Google Scholar
  13. 13.
    Naik, G., Singhal, S., Kumar, A., Karandikar, A.: Quantitative assessment of TV white space in India. In: Proceedings of the Twentieth National Conference on Communications (NCC), Kanpur, India, pp. 1–6 (2014)Google Scholar
  14. 14.
    National Frequency Allocation Plan, October 2018. http://wpc.dot.gov.in/WriteReadData/userfiles/NFAP%202018.pdf
  15. 15.
  16. 16.
    Patil, K., Skouby, K., Chandra, A., Prasad., R.: Spectrum occupancy statistics in the context of cognitive radio. In: Proceedings of the 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), Brest, France, pp. 1–5 (2011)Google Scholar
  17. 17.
    Sanders, F.H.: Broadband spectrum surveys in Denver, CO, San Diego, CA, and Los Angeles, CA: methodology, analysis, and comparative results. In: 1998 Proceedings of IEEE Symposium on Electromagnetic Compatibility (1998)Google Scholar
  18. 18.
    Shaban, M.: Sub-Nyquist spectrum sensing for wideband cognitive radios: a survey. Int. J. Wirel. Mob. Comput. 12(2), 107–116 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shukla, S., Srivastava, N.: An overview on cooperative spectrum sensing in cognitive radios. Int. J. Wirel. Mob. Comput. 11(4), 267 (2016)CrossRefGoogle Scholar
  20. 20.
    Sun, H., Nallanathan, A., Wang, C., Chen, Y.: Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wirel. Commun. 20(2), 74–82 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sheetal Borde
    • 1
    Email author
  • Kalyani Joshi
    • 2
  • Rajendrakumar Patil
    • 1
  1. 1.College of EngineeringPuneIndia
  2. 2.PES’s Modern College of EngineeringPuneIndia

Personalised recommendations