Privacy Preserving Approach for Proficient User Revocation in Cloud Environments

  • S. Suganthi DeviEmail author
  • V. Asanambigai
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)


Cloud environments can afford dynamic infrastructure for the mobile users. Due to the lack of security in cloud, auditing it with public concern and privacy for the distributed information available on the cloud remains as the challenging task. The user revocation plays a vital role for maintaining the integrity for the user’s privacy. For this reason, we generate a proficient the public auditing methodology is propose and implemented to maintain the user revocation with the privacy for the user in the unsecured cloud environment.


Privacy preservation User revocation Cloud environment Shared data Third party auditor System administrator 


  1. 1.
    Thiyagarajan, V.S., Ayyasamy, A.: Privacy preserving over big data through VSSFA and MapReduce framework in cloud environment. Wirel. Pers. Commun. 97(4), 6239–6263 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, M., Cao, N., Yu, S., Lou, W.: FindU: private-preserving personal profile matching in mobile social networks. In: Proceedings of IEEE INFOCOM, pp. 2435–2443 (2011)Google Scholar
  3. 3.
    Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application to sensor networks. In: Proceedings of IEEE INFOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1917–1928. IEEE (2005)Google Scholar
  4. 4.
    Venkatachalapathy, K., Thiyagarajan, V.S., Ayyasamy, A., Ranjani, K.: Big data with cloud virtualization for effective resource handling. Int. J. Control Theory Appl. 9(2), 435–444 (2016)Google Scholar
  5. 5.
    Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms and applications. In: The Proceedings of ACM CCS 2005, pp. 310–319 (2005)Google Scholar
  6. 6.
    Karthiban, K., Smys, S.: Privacy preserving approaches in cloud computing. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC), pp. 462–467. IEEE, 19 Jan 2018Google Scholar
  7. 7.
    Sridhar, S., Smys, S.: A hybrid multilevel authentication scheme for private cloud environment. In: 2016 10th International Conference on Intelligent Systems and Control (ISCO), pp. 1–5. IEEE, 7 Jan 2016Google Scholar
  8. 8.
    Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-based quantum cryptography: impossibility and constructions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    van Dijk, M., Juels, A., Oprea, A., Rivest, R.L., Stefanov, E., Triandopoulos, N.: Hourglass schemes: how to prove that cloud files are encrypted. In: The Proceedings of ACM CCS 2012, pp. 265–280 (2012)Google Scholar
  10. 10.
    Wang, B., Li, B., Li, H.: Public auditing for shared data with efficient user revocation in the cloud. In: INFOCOM 2013, pp. 2904–2912 (2013)Google Scholar
  11. 11.
    Tate, S.R., Vishwanathan, R., Everhart, L.: Multi-user dynamic proofs of data possession using trusted hardware. In: Proceedings of ACM CODASPY 2013, pp. 353–364 (2013)Google Scholar
  12. 12.
    Yuan, J., Yu, S.: Proofs of retrievability with public verifiability and constant communication cost in cloud. In: Proceedings of ACM ASIACCS-SCC 2013 (2013)Google Scholar
  13. 13.
    Wang, H.: Proxy provable data possession in public clouds. IEEE Trans. Serv. Comput. (accepted)Google Scholar
  14. 14.
    Wang, B., Li, B., Li, H.: Oruta: privacy-preserving public auditing for shared data in the cloud. In: The Proceedings of IEEE Cloud 2012, pp. 295–302 (2012)Google Scholar
  15. 15.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  16. 16.
    Hao, Z., Zhong, Z., Yu, N.: A privacy-preserving remote data integrity checking protocol with data dynamics and public verifiability. IEEE Trans. Knowl. Data Eng. 23(9), 1432–1437 (2011)CrossRefGoogle Scholar
  17. 17.
    Chen, L.: Using algebraic signatures to check data possession in cloud storage. Future Gener. Comput. Syst. 29(7), 1709–1715 (2013)CrossRefGoogle Scholar
  18. 18.
    Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer EngineeringSrinivasa Subbaraya Polytechnic CollegePuthur, NagapattinamIndia
  2. 2.Department of Computer EngineeringGovernment Polytechnic CollegePerambalurIndia

Personalised recommendations