Orthogonal Frequency Division Multiplexing-Multiple Input Multiple Output Channel Estimation for Rayleigh and Rician Channel Models

  • R. B. Hussana JoharEmail author
  • B. R. Sujatha
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)


Mobile users experience the effect of change involved in channel characteristics. System delay leads the outdated channel state information (CSI) and that will be used for adaptive modulation techniques. By using adapt modulation techniques can predict the future CSI with the help of channel prediction approaches. The primary contribution of this paper is a low complexity channel prediction method using polynomial approximation. In this paper, orthogonal frequency division multiplexing (OFDM) is designed for radio band communication to moderate inter symbol interference and thus increase the system capacity. A comparison of MIMO-OFDM using BPSK and QAM on Rayleigh and Rician channels, by designing the STCP estimators through a 2 × 2 multi antenna system using MATLAB is done.


Orthogonal frequency division multiplexing (OFDM) Additive white gaussian noise (AWGN) Minimum mean square estimator (MMSE) Spatial Temporal channel prediction (STCP) 


  1. 1.
    Sampath, H., Talwar, S., Tellado, J., Erceg, V., Paulraj, A.: A fourth generation MIMO-OFDM broadband wireless system design, performance, and field trial results. IEEE Commun. Mag. 40(9), 143–149 (2005)CrossRefGoogle Scholar
  2. 2.
    He, H., Zeng, Y.: Transmit Beamforming Interpolation algorithm for MIMO-OFDM system in limited feedback scenario. IEEE J. Sel. Areas Commun. 26(6), 958–959 (2012)Google Scholar
  3. 3.
    Du-Hallen, A., Hu, S., Hallen, H.: Long-range prediction of fading signals: enabling adaptive transmission for mobile radio channels. IEEE Signal Process. Mag. 17(3), 62–75 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Giannakis, G.B.: Resource allocation for wireless multiuser OFDM networks. IEEE Trans. Inf. Theory 57(7), 4359–4372 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Joham, M., Castro, P.M., Utschick, W., Castedo, L.: Robust precoding with limited feedback design based on predcoding MSE for MU-MISO systems. IEEE Trans. Signal Process. 60(6), 3101–3111 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Prakash, S., McLoughlin, I.; Predictive transmit antenna selection with maximal ratio combining. In: Proceedings of 2013 IEEE GLOBECOM, pp. 1–6 (2013)Google Scholar
  7. 7.
    Duel-Hallen, A.: Fading channel prediction for mobile radio adaptive transmission systems. Proc. IEEE 95, 2299–2313 (2013)CrossRefGoogle Scholar
  8. 8.
    Hallen, H., Duel-Hallen, A., Hu, T.S.Y.S., Lei, M.: A physical model for wireless channels to provide insights for long range prediction. In: Proceedings of 2011 MILCOM, vol. 1, pp. 627–631 (2011)Google Scholar
  9. 9.
    Heidari, A., Khandani, A.K., McAvoy, D.: Adaptive modelling and long-range prediction of mobile fading channels. IET Commun. 4, 39–50 (2010)CrossRefGoogle Scholar
  10. 10.
    Hwang, J.K., Winters, J.H.: Sinusoidal modeling and prediction of fast fading processes. In: Proceedings of 2012 IEEE GLOBECOM, pp. 892–897 (2012)Google Scholar
  11. 11.
    Chen, M., Ekman, T., Viberg, M.: New approaches for channel prediction based on sinusoidal modeling. EURASIP J. Adv. Signal Process. 2007(1), 04933 (2006)zbMATHGoogle Scholar
  12. 12.
    Semmelrodt, S., Kattenbach, R.: Investigation of different fading forecast schemes for flat fading radio channels. In: Proceedings of 2013 IEEE VTC – Fall, vol. 1, pp. 149–153 (2013)Google Scholar
  13. 13.
    Schafhuber, D., Matz, G.: MMSE and adaptive prediction of time varying channels for OFDM systems. IEEE Trans. Wirel. Commun. 4(2), 593–602 (2005)CrossRefGoogle Scholar
  14. 14.
    Wong, I.C., Forenza, A., Heath, R.W., Evans, B.L.: Long range channel prediction for adaptive OFDM systems. In: Proceedings of 2014 IEEE ACSSC, vol. 1, pp. 732–736 (2014)Google Scholar
  15. 15.
    Li, Y., Cimini, L.J., Sollenberger, N.R.: Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Trans. Commun. 46, 902–915 (2009)CrossRefGoogle Scholar
  16. 16.
    Semmelrodt, S., Kattenbach, R.: A 2-D fading forecast of time variant channels based on parametric modeling techniques. In: Proceedings of 2016 IEEE PIMRC, pp. 1640–1644 (2016)Google Scholar
  17. 17.
    Wong, I.C., Evans, B.L.: Sinusoidal modeling and adaptive channel prediction in mobile OFDM systems. IEEE Trans. Signal Process. 56(41), 1601–1615 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Park, S., Choi, J.W., Seol, J.Y., Shim, B.: Expectation maximization-based channel estimation for multiuser MIMO systems. IEEE Trans. Commun. 65, 2397–2410 (2017)CrossRefGoogle Scholar
  19. 19.
    Zhou, Z., Fang, J., Yang, L., Li, H., Chen, Z., Blum, R.S.: Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMO-OFDM systems. IEEE J. Sel. Areas Commun. 35, 1524–1538 (2017)CrossRefGoogle Scholar
  20. 20.
    Thomas, T., Charishma, G., Veeraswamy, K.: MIMO antenna system with high gain and low for HF of 5G operating at MM wave design. In: 10th International Conference on Information Communications and Signal Processing (ICICS) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ECEMalnad College of EngineeringHassanIndia

Personalised recommendations