Advertisement

Malicious User Detection in Cooperative Sensing Environment Using Robust Distance

  • N. SwethaEmail author
  • D. L. Chaitanya
  • HimaBindu Valiveti
  • B. Anil Kumar
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 98)

Abstract

In a Cooperative Spectrum Sensing environment, malicious secondary users (SU) degrade the overall performance of the radio network. The existing techniques need to assume an upper bound on the number of such users in a network, to identify them. In the present work, we use the robust distance based on minimum covariance determinant (MCD) to identify the malicious users in the network without assuming such an upper bound. Further, we validate the performance of the proposed RD method in random, always high and always low selfish attacks scenarios.

Keywords

Robust distance Mahalanobis distance Minimum Covariance Determinant Entropy detection 

References

  1. 1.
    Srinu, S., Sabat, S.L.: Cooperative wideband spectrum sensing in suspicious cognitive radio network. IET Wirel. Sens. Syst. 3(2), 153–161 (2013)CrossRefGoogle Scholar
  2. 2.
    Marinho, J., Granjal, J., Monteiro, E.: A survey on security attacks and countermeasures with primary user detection in cognitive radio networks. EURASIP J. Inf. Secur. 2015(1), 1–14 (2015)CrossRefGoogle Scholar
  3. 3.
    Zhang, L., Ding, G., Wu, Q., Zou, Y., Han, Z., Wang, J.: Byzantine attack and defense in cognitive radio networks: a survey. IEEE Commun. Surv. Tutor. 17(3), 1342–1363 (2015)CrossRefGoogle Scholar
  4. 4.
    Duggineni, C., Chari, K.M.: Mitigation strategy against ssdf attack for healthcare in cognitive radio networks. Int. J. Biomed. Eng. Technol. 27(1–2), 33–49 (2018)CrossRefGoogle Scholar
  5. 5.
    Hubert, M., Rousseeuw, P.J., Van Aelst, S.: Multivariate outlier detection and robustness. Handb. Stat. 23, 263–302 (2005)CrossRefGoogle Scholar
  6. 6.
    Kaligineedi, P., Khabbazian, M., Bhargava, V.K.: Malicious user detection in a cognitive radio cooperative sensing system. IEEE Trans. Wirel. Commun. 9(8), 2488–2497 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, H., Han, Z.: Catch me if you can: an abnormality detection approach for collaborative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 9(11), 3554–3565 (2010)CrossRefGoogle Scholar
  8. 8.
    Bhattacharjee, S., Marchang, N.: Malicious user detection with local outlier factor during spectrum sensing in cognitive radio network. IJAHUC 30(4), 215–223 (2019)CrossRefGoogle Scholar
  9. 9.
    Maric, S., Reisenfeld, S., Abbas, R.: Combating SSDFA reputation mining and reset attacks in cognitive radio networks. In: IEEE Region Ten Symposium (Tensymp), pp. 40–44 (2018)Google Scholar
  10. 10.
    Ghaznavi, M., Jamshidi, A.: A reliable spectrum sensing method in the presence of malicious sensors in distributed cognitive radio network. IEEE Sens. J. 15(3), 1810–1816 (2015)Google Scholar
  11. 11.
    Sharifi, A.A., Niya, M.J.M.: Defense against SSDF attack in cognitive radio networks: attack-aware collaborative spectrum sensing approach. IEEE Commun. Lett. 20(1), 93–96 (2016)CrossRefGoogle Scholar
  12. 12.
    Wang, W., Li, H., Sun, Y.L., Han, Z.: Securing collaborative spectrum sensing against untrustworthy secondary users in cognitive radio networks. EURASIP J. Adv. Signal Process. 2010(1), 1 (2009)CrossRefGoogle Scholar
  13. 13.
    Wang, W., Chen, L., Shin, K.G., Duan, L.: Thwarting intelligent malicious behaviors in cooperative spectrum sensing. IEEE Trans. Mob. Comput. 14(11), 2392–2405 (2015)CrossRefGoogle Scholar
  14. 14.
    Sharma, R.K., Rawat, D.B.: Advances on security threats and countermeasures for cognitive radio networks: a survey. IEEE Commun. Surv. Tutor. 17(2), 1023–1043 (2015)CrossRefGoogle Scholar
  15. 15.
    Prasain, P., Choi, D.-Y.: Nullifying malicious users for cooperative spectrum sensing in cognitive radio networks using outlier detection methods. In: Ubiquitous Computing Application and Wireless Sensor, pp. 123–131. Springer (2015)Google Scholar
  16. 16.
    Zhang, Y.L., Zhang, Q.Y., Melodia, T.: A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 14(6), 533–535 (2010)CrossRefGoogle Scholar
  17. 17.
    Swetha, N., Sastry, P.N., Rao, Y.R., Sabat, S.L.: Parzen window entropy based spectrum sensing in cognitive radio. Comput. Electr. Eng. 52, 379–389 (2016)CrossRefGoogle Scholar
  18. 18.
    Cai, Q., He, H., Man, H.: Spatial outlier detection based on iterative self-organizing learning model. Neurocomputing 117, 161–172 (2013)CrossRefGoogle Scholar
  19. 19.
    Kalamkar, S.S., Banerjee, A., Roychowdhury, A.: Malicious user suppression for cooperative spectrum sensing in cognitive radio networks using Dixon’s outlier detection method. In: National Conference on Communications (NCC), pp. 1–5. IEEE (2012)Google Scholar
  20. 20.
    Kalamkar, S.S., Singh, P.K., Banerjee, A.: Block outlier methods formalicious user detection in cooperative spectrum sensing. In: IEEE79th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2014)Google Scholar
  21. 21.
    EN ETSI: 300 744 v1. 6.1 2008–2009: European standard (telecommunications series) digital video broadcasting (DVB). Framing structure, channel coding and modulation for digital terrestrial television (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • N. Swetha
    • 1
    Email author
  • D. L. Chaitanya
    • 1
  • HimaBindu Valiveti
    • 1
  • B. Anil Kumar
    • 1
  1. 1.GRIETHyderabadIndia

Personalised recommendations