Advertisement

Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks

  • Mayank PatwariEmail author
  • Ralf Gutjahr
  • Rainer Raupach
  • Andreas Maier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11905)

Abstract

With the increasing use of CT in diagnostic imaging, reducing the clinical radiation dose is necessary for ensuring patient safety. Reduced radiation dose results in quantum noise which adversely affects image quality and diagnostic value. Moreover, obtaining high quality images to act as reference images for image quality assessment is difficult. Therefore, automatic no-reference quality assessment of reconstructed images is necessary to preserve diagnostic image quality, while controlling radiation dose. In this work, we investigate the use of a deep convolutional neural network to measure CT image quality. Our developed metric shows concordance with conventional metrics of CT image quality (\(|r|>\) 0.75, \(|\rho |>\) 0.75). Our metric ranks images in terms of quality highly accurately (\(\tau \) = 0.98). We measure noise textures and levels not present in our training dataset. Furthermore, the proposed metric shows the improved quality in high dose iteratively reconstructed images, and the reduced quality in low dose images.

Keywords

Quantum noise Convolutional neural network Computed tomography Image quality 

References

  1. 1.
    Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based structural similarity for image quality assessment. In: International Conference on Image Processing, pp. 2929–2932, no. 1 (2006)Google Scholar
  2. 2.
    Galdran, A., Costa, P., Bria, A., Araujo, T., Mendonca, A.M., Campilho, A.: A no-reference quality metric for retinal vessel tree segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 1, pp. 82–90 (2018). https://doi.org/10.1007/978-3-030-00928-1Google Scholar
  3. 3.
    Kijewski, M.F., Judy, P.F.: The noise spectrum of CT images. Phys. Med. Biol. 32, 565–575 (1987)CrossRefGoogle Scholar
  4. 4.
    Kim, J., Nguyen, A.D., Lee, S.: Deep CNN-based blind image quality predictor. IEEE Trans. Neural Netw. Learn. Syst. 30(1), 11–24 (2019).  https://doi.org/10.1109/TNNLS.2018.2829819CrossRefGoogle Scholar
  5. 5.
    Kingma, D.P., Bai, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015). https://doi.org/10.1063/1.4902458
  6. 6.
    Li, C., Bovik, A.C.: Content-partitioned structural similarity index for image quality assessment. Signal Process. Image Commun. 25(7), 517–526 (2010).  https://doi.org/10.1016/j.image.2010.03.004CrossRefGoogle Scholar
  7. 7.
    Liu, P., Li, Y., El Basha, M.D., Fang, R.: Neural network evolution using expedited genetic algorithm for medical image denoising. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 12–20. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_2CrossRefGoogle Scholar
  8. 8.
    Ma, K., et al.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2017).  https://doi.org/10.1109/TIP.2016.2631888MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning, vol. 30, p. 6 (2013)Google Scholar
  10. 10.
    Maier, A., Fahrig, R.: GPU denoising for computed tomography. In: Xun, J., Jiang, S. (eds.) Graphics Processing Unit-Based High Performance Computing in Radiation Therapy, 1st edn, pp. 113–128. CRC Press, Boca Raton (2015)Google Scholar
  11. 11.
    Oppelt, A.: Noise in computed tomography. In: Aktiengesselschaft, S. (ed.) Imaging Systems for Medical Diagnostics, 2 edn., chap. 13.1.4.2, p. 996. Publicis Corporate Publishing (2005). https://doi.org/10.1145/2505515.2507827
  12. 12.
    Ramirez-Giraldo, J.C., Grant, K.L., Raupach, R.: ADMIRE: Advanced Modeled Iterative Reconstruction (2015). https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/admire
  13. 13.
    Renieblas, G.P., del Castillo, E.G., Gómez-Leon, N., González, A.M., Nogués, A.T.: Structural similarity index family for image quality assessment in radiological images. J. Med. Imaging 4(3), 035501–1–11 (2017). https://doi.org/10.1117/1.jmi.4.3.035501CrossRefGoogle Scholar
  14. 14.
    Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3441–3452 (2006).  https://doi.org/10.1109/TPCG.2004.1314471CrossRefGoogle Scholar
  15. 15.
    Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: International Conference on Learning Representations, pp. 1–8 (2013)Google Scholar
  16. 16.
    Stierstorfer, K., Rauscher, A., Boese, J., Bruder, H., Schaller, S., Flohr, T.: Weighted FBP - a simple approximated 3D FBP algorithm for multislice spiral CT with good dose usage for arbitrary pitch. Phys. Med. Biol. 49(11), 2209–2218 (2004).  https://doi.org/10.1088/0031-9155/49/11/007CrossRefGoogle Scholar
  17. 17.
    Verdun, F.R., et al.: Image quality in CT: from physical measurements to model observers. Physica Medica 31(8), 823–843 (2015).  https://doi.org/10.1016/j.ejmp.2015.08.007CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Member, S., Simoncelli, E.P., Member, S.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402 (2003). https://doi.org/10.1042/BJ20071051CrossRefGoogle Scholar
  20. 20.
    Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974). https://doi.org/10.1.1.41.8085
  21. 21.
    Winklehner, A., et al.: Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur. Radiol. 21(12), 2521–2526 (2011).  https://doi.org/10.1007/s00330-011-2227-yCrossRefGoogle Scholar
  22. 22.
    Wolterink, J.M., Leiner, T., Viergever, M.A., Isgum, I.: Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans. Med. Imaging 36(12), 2536–2545 (2017).  https://doi.org/10.1109/TMI.2017.2708987CrossRefGoogle Scholar
  23. 23.
    Xu, Q., Zhang, L., Yu, H., Mou, X., Hsieh, J., Wang, G.: Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans. Med. Imaging 9(31), 1682–1697 (2012).  https://doi.org/10.1016/j.pmrj.2014.02.014.LumbarCrossRefGoogle Scholar
  24. 24.
    Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network With Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018).  https://doi.org/10.1109/TMI.2018.2827462MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 586–595, no. 1 (2018). https://doi.org/10.1109/CVPR.2018.00068

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany
  2. 2.Siemens Healthcare GmbHForchheimGermany
  3. 3.Erlangen Graduate School in Advanced Optical Technologies (SAOT)ErlangenGermany

Personalised recommendations