Advertisement

The Ancient Earth

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Much of Chap.  5 focused on the fluid envelope of various surface environments in the modern Earth, where Fe redox changes, organic complexation, and mineral precipitation produce large changes in Fe isotope compositions of fluids and minerals. As we step into the ancient Earth, we lose the ability to measure fluids directly, yet the fluid envelope remained a key component of the Fe biogeochemical cycle in Earth’s past, especially in an anoxic Earth when large quantities of \( {\text{Fe}}_{{\,\,\,\,{\text{aq}}}}^{ 2+ } \) existed in the oceans.

References

  1. Adams DD, Hurtgen MT, Sageman BB (2010) Volcanic triggering of a biogeochemical cascade during Oceanic Anoxic Event 2. Nat Geosci 3(3):201–204.  https://doi.org/10.1038/ngeo743CrossRefGoogle Scholar
  2. Albut G, Babechuk MG, Kleinhanns IC, Benger M, Beukes NJ, Steinhilber B, Smith AJB, Kruger SJ, Schoenberg R (2018) Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochim Cosmochim Acta 228:157–189.  https://doi.org/10.1016/j.gca.2018.02.034CrossRefGoogle Scholar
  3. Alexander BW, Bau M, Andersson P (2009) Neodymium isotopes in Archean seawater and implications for the marine Nd cycle in Earth’s early oceans. Earth Planet Sci Lett 283(1–4):144–155.  https://doi.org/10.1016/j.epsl.2009.04.004CrossRefGoogle Scholar
  4. Alexander BW, Bau M, Andersson P, Dulski P (2008) Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim Cosmochim Acta 72(2):378–394.  https://doi.org/10.1016/j.gca.2007.10.028CrossRefGoogle Scholar
  5. Algeo TJ, Luo GM, Song HY, Lyons TW, Canfield DE (2015) Reconstruction of secular variation in seawater sulfate concentrations. Biogeosciences 12(7):2131–2151.  https://doi.org/10.5194/bg-12-2131-2015CrossRefGoogle Scholar
  6. Alibert C, McCulloch MT (1993) Rare earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochim Cosmochim Acta 57:187–204CrossRefGoogle Scholar
  7. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441(7094):714–718.  https://doi.org/10.1038/nature04764CrossRefGoogle Scholar
  8. Alt JC (1995) Sulfur isotopic profile through the oceanic crust: sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology 23(7):585–588CrossRefGoogle Scholar
  9. Amenabar MJ, Shock EL, Roden EE, Peters JW, Boyd ES (2017) Microbial substrate preference dictated by energy demand rather than supply. Nat Geosci 10:577–581CrossRefGoogle Scholar
  10. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R (2007) A whiff of oxygen before the great oxidation event? Science 317:1903–1906.  https://doi.org/10.1126/science.1140325CrossRefGoogle Scholar
  11. Anbar AD, Knoll AH (2002) Proterozoic Ocean chemistry and evolution: a bioinorganic bridge? Science 297:1137–1142CrossRefGoogle Scholar
  12. Anderson TF, Raiswell R (2004) Sources and mechanisms for the enrichment of highly reactive iron in euxinic black sea sediments. Am J Sci 304:203–233CrossRefGoogle Scholar
  13. Asael D, Rouxel O, Poulton SW, Lyons TW, Bekker A (2018) Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. Am J Sci 318 (3):275–299.  https://doi.org/10.2475/03.2018.01CrossRefGoogle Scholar
  14. Asael D, Tissot FLH, Reinhard CT, Rouxel O, Dauphas N, Lyons TW, Ponzevera E, Liorzou C, Chéron S (2013) Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem Geol 362:193–210.  https://doi.org/10.1016/j.chemgeo.2013.08.003CrossRefGoogle Scholar
  15. Babechuk MG, Kleinhanns IC, Schoenberg R (2017) Chromium geochemistry of the ca. 1.85 Ga Flin Flon paleosol. Geobiology 15(1):30–50.  https://doi.org/10.1111/gbi.12203CrossRefGoogle Scholar
  16. Babechuk MG, Weimar NE, Kleinhanns IC, Eroglu S, Swanner ED, Kenny GG, Kamber BS, Schoenberg R (2019) Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: new multi-proxy constraints from the Cooper Lake paleosol. Precambrian Res 323:126–163.  https://doi.org/10.1016/j.precamres.2018.12.029CrossRefGoogle Scholar
  17. Baldwin GJ, Turner EC, Kamber BS (2016) Tectonic controls on distribution and stratigraphy of the Cryogenian Rapitan iron formation, northwestern Canada. Precambrian Res 278:303–322.  https://doi.org/10.1016/j.precamres.2016.03.014CrossRefGoogle Scholar
  18. Bankole OM, El Albani A, Meunier A, Rouxel OJ, Gauthier-Lafaye F, Bekker A (2016) Origin of red beds in the Paleoproterozoic Franceville Basin, Gabon, and implications for sandstone-hosted uranium mineralization. Am J Sci 316 (9):839–872.  https://doi.org/10.2475/09.2016.02CrossRefGoogle Scholar
  19. Bao H, Koch PL (1999) Oxygen isotope fractionation in ferric oxide-water systems: low temperature synthesis. Geochim Cosmochim Acta 63(5):559–613CrossRefGoogle Scholar
  20. Bao H, Rumble D, Lowe DR (2007) The five stable isotope compositions of Fig Tree barites: Implications on sulfur cycle in ca. 3.2 Ga oceans. Geochim Cosmochim Acta 71(20):4868–4879.  https://doi.org/10.1016/j.gca.2007.05.032CrossRefGoogle Scholar
  21. Barclay RS, McElwain JC, Sageman BB (2010) Carbon sequestration activated by a volcanic CO2 pulse during Ocean Anoxic Event 2. Nat Geosci 3(3):205–208.  https://doi.org/10.1038/ngeo757CrossRefGoogle Scholar
  22. Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217(3–4):315–329.  https://doi.org/10.1016/s0012-821x(03)00608-3CrossRefGoogle Scholar
  23. Barlow E, Van Kranendonk MJ, Yamaguchi KE, Ikehara M, Lepland A (2016) Lithostratigraphic analysis of a new stromatolite-thrombolite reef from across the rise of atmospheric oxygen in the Paleoproterozoic Turee Creek Group, Western Australia. Geobiology 14(4):317–343.  https://doi.org/10.1111/gbi.12175CrossRefGoogle Scholar
  24. Barnes CE, Cochran JK (1990) Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet Sci Lett 97:94–101CrossRefGoogle Scholar
  25. Bau M, Höhndorf A, Dulski P, Beukes NJ (1997) Sources of rare-earth elements and iron in paleoproterozoic iron-formations from the transvaal supergroup, South Africa: evidence from Neodymium Isotopes. J Geol 105:121–129CrossRefGoogle Scholar
  26. Bau M, Möller P (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim Cosmochim Acta 57:2239–2249CrossRefGoogle Scholar
  27. Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. Rev Mineral Geochem 43(1):415–467CrossRefGoogle Scholar
  28. Baur ME, Hayes JM, Studley SA, Walter MR (1985) Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ Geol 80(2):270–282.  https://doi.org/10.2113/gsecongeo.80.2.270CrossRefGoogle Scholar
  29. Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295(1–2):241–250.  https://doi.org/10.1016/j.epsl.2010.04.006CrossRefGoogle Scholar
  30. Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31(7):629–632CrossRefGoogle Scholar
  31. Becker TW, Conrad CP, Buffett B, Müller RD (2009) Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth Planet Sci Lett 278(3–4):233–242.  https://doi.org/10.1016/j.epsl.2008.12.007CrossRefGoogle Scholar
  32. Bekker A, Holland HD (2012) Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet Sci Lett 317–318:295–304.  https://doi.org/10.1016/j.epsl.2011.12.012CrossRefGoogle Scholar
  33. Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  34. Bellefroid EJ, Hood AVS, Hoffman PF, Thomas MD, Reinhard CT, Planavsky NJ (2018) Constraints on Paleoproterozoic atmospheric oxygen levels. Proc Natl Acad Sci USA 115 (32):8104–8109.  https://doi.org/10.1073/pnas.1806216115CrossRefGoogle Scholar
  35. Berner RA (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta 70 (23):5653–5664.  https://doi.org/10.1016/j.gca.2005.11.032CrossRefGoogle Scholar
  36. Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildman RA (2003) Phanerozoicatmosphericoxygen. Annu Rev Earth Planet Sci 31(1):105–134.  https://doi.org/10.1146/annurev.earth.31.100901.141329CrossRefGoogle Scholar
  37. Beukes NJ, Cairncross B (1991) A lithostratigraphic-sedimentological reference profile for the Late Archaean Mozaan Group, Pongola Sequence: application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. S Afr J Geol 94(1):44–69Google Scholar
  38. Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H (2002) Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30(6):491–494CrossRefGoogle Scholar
  39. Beukes NJ, Gutzmer J (2008) Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. SEG Rev 15:5–17Google Scholar
  40. Beukes NJ, Swindell EPW, Wabo H (2016) Manganese deposits of Africa. Episodes 39(2).  https://doi.org/10.18814/epiiugs/2016/v39i2/95779CrossRefGoogle Scholar
  41. Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69 (3):711–725.  https://doi.org/10.1016/j.gca.2004.07.026CrossRefGoogle Scholar
  42. Blamey NJF, Brand U, Parnell J, Spear N, Lécuyer C, Benison K, Meng F, Ni P (2016) Paradigm shift in determining Neoproterozoic atmospheric oxygen. Geology 44(8):651–654.  https://doi.org/10.1130/g37937.1CrossRefGoogle Scholar
  43. Blanchard M, Poitrasson F, Méheut M, Lazzeri M, Mauri F, Balan E (2012) Comment on “New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems” by V.B. Polyakov and D.M. Soultanov. Geochim Cosmochim Acta 87:356–359.  https://doi.org/10.1016/j.gca.2012.01.048CrossRefGoogle Scholar
  44. Blättler CL, Jenkyns HC, Reynard LM, Henderson GM (2011) Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet Sci Lett 309(1–2):77–88.  https://doi.org/10.1016/j.epsl.2011.06.029CrossRefGoogle Scholar
  45. Blättler CL, Kump LR, Fischer WW, Paris G, Kasbohm JJ, Higgins JA (2016) Constraints on ocean carbonate chemistry and pCO2 in the Archaean and Palaeoproterozoic. Nat Geosci 10(1):41–45.  https://doi.org/10.1038/ngeo2844CrossRefGoogle Scholar
  46. Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD (2014) Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ Sci Technol 48(10):5477–5485.  https://doi.org/10.1021/es4043275CrossRefGoogle Scholar
  47. Bolhar R, Hofmann A, Kemp AIS, Whitehouse MJ, Wind S, Kamber BS (2017) Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8–3.1 Ga detrital zircons. Geochim Cosmochim Acta 215:432–446.  https://doi.org/10.1016/j.gca.2017.07.008CrossRefGoogle Scholar
  48. Brocks JJ, Jarrett AJM, Sirantoine E, Hallmann C, Hoshino Y, Liyanage T (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548(7669):578–581.  https://doi.org/10.1038/nature23457CrossRefGoogle Scholar
  49. Brown M (2007) Metamorphic conditions in orogenic belts: a record of secular change. Int Geol Rev 49:193–234CrossRefGoogle Scholar
  50. Burke K, Kidd WS (1978) Were Archean continental geothermal gradients much steeper than those of today? Nature 272(5650):240–241CrossRefGoogle Scholar
  51. Burton KW, Ling H-F, O’Nions RK (1997) Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 386:382–385CrossRefGoogle Scholar
  52. Busigny V, Marin-Carbonne J, Muller E, Cartigny P, Rollion-Bard C, Assayag N, Philippot P (2017) Iron and sulfur isotope constraints on redox conditions associated with the 3.2 Ga barite deposits of the Mapepe Formation (Barberton Greenstone Belt, South Africa). Geochim Cosmochim Acta 210:247–266.  https://doi.org/10.1016/j.gca.2017.05.002CrossRefGoogle Scholar
  53. Busigny V, Planavsky NJ, Goldbaum E, Lechte MA, Feng L, Lyons TW (2018) Origin of the Neoproterozoic Fulu iron formation, South China: Insights from iron isotopes and rare earth element patterns. Geochim Cosmochim Acta 242:123–142.  https://doi.org/10.1016/j.gca.2018.09.006CrossRefGoogle Scholar
  54. Byerly GR, Lowe DR, Heubeck C (2019) Geologic evolution of the Barberton Greenstone Belt—a unique record of crustal development, surface processes, and early life 3.55–3.20 Ga. In: Earth’s oldest rocks, pp 569–613.  https://doi.org/10.1016/b978-0-444-63901-1.00024-1CrossRefGoogle Scholar
  55. Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88CrossRefGoogle Scholar
  56. Campbell IH, Taylor SR (1983) No water, No granites-No oceans, No continents. Geophys Res Lett 10(11):1061–1064CrossRefGoogle Scholar
  57. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453CrossRefGoogle Scholar
  58. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33(1):1–36.  https://doi.org/10.1146/annurev.earth.33.092203.122711CrossRefGoogle Scholar
  59. Canfield DE, Farquhar J (2009) Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA 106(20):8123–8127.  https://doi.org/10.1073/pnas.0902037106CrossRefGoogle Scholar
  60. Canfield DE, Ngombi-Pemba L, Hammarlund EU, Bengtson S, Chaussidon M, Gauthier-Lafaye F, Meunier A, Riboulleau A, Rollion-Bard C, Rouxel O, Asael D, Pierson-Wickmann AC, El Albani A (2013) Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proc Natl Acad Sci USA 110(42):16736–16741.  https://doi.org/10.1073/pnas.1315570110CrossRefGoogle Scholar
  61. Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science 321(5891):949–952CrossRefGoogle Scholar
  62. Canfield DE, Poulton SW, Narbonne GM (2007) Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315(5808):92–95.  https://doi.org/10.1126/science.1135013CrossRefGoogle Scholar
  63. Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883CrossRefGoogle Scholar
  64. Caquineau T, Paquette J-L, Philippot P (2018) U-Pb detrital zircon geochronology of the Turee Creek Group, Hamersley Basin, Western Australia: timing and correlation of the Paleoproterozoic glaciations. Precambrian Res 307:34–50.  https://doi.org/10.1016/j.precamres.2018.01.003CrossRefGoogle Scholar
  65. Cather SM, Dunbar NW, McDowell FW, McIntosh WC, Scholle PA (2009) Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis. Geosphere 5(3):315–324.  https://doi.org/10.1130/ges00188.1CrossRefGoogle Scholar
  66. Caves JK, Jost AB, Lau KV, Maher K (2016) Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet Sci Lett 450:152–163.  https://doi.org/10.1016/j.epsl.2016.06.035CrossRefGoogle Scholar
  67. Cavosie AJ, Wilde SA, Valley JW, F. EIM (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681CrossRefGoogle Scholar
  68. Chandler FW (1980) Proterozoic redbed sequences of Canada. Energy, Mines and Resources Canada, Geological Survey of Canada Bulletin 311:1–53Google Scholar
  69. Chen T-Y, Ling H-F, Hu R, Frank M, Jiang S-Y (2013) Lead isotope provinciality of central North Pacific Deep Water over the Cenozoic. Geochem Geophys Geosyst 14(5):1523–1537.  https://doi.org/10.1002/ggge.20114CrossRefGoogle Scholar
  70. Chen X, Ling HF, Vance D, Shields-Zhou GA, Zhu M, Poulton SW, Och LM, Jiang SY, Li D, Cremonese L, Archer C (2015) Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun 6:7142.  https://doi.org/10.1038/ncomms8142CrossRefGoogle Scholar
  71. Cheney ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and its equivalent in Western Australia. Precambrian Res 79:3–24CrossRefGoogle Scholar
  72. Cheng M, Li C, Chen X, Zhou L, Algeo TJ, Ling H-F, Feng L-J, Jin C-S (2018) Delayed Neoproterozoic oceanic oxygenation: evidence from Mo isotopes of the Cryogenian Datangpo formation. Precambrian Res 319:187–197.  https://doi.org/10.1016/j.precamres.2017.12.007CrossRefGoogle Scholar
  73. Cheng M, Li C, Zhou L, Feng L, Algeo TJ, Zhang F, Romaniello S, Jin C, Ling H, Jiang S (2017) Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China. Geochim Cosmochim Acta 210:42–58.  https://doi.org/10.1016/j.gca.2017.04.032CrossRefGoogle Scholar
  74. Chou I-M, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314CrossRefGoogle Scholar
  75. Christensen JN, Halliday AN, Godfrey LV, Hein JR (1997) Climate and Ocean dynamics and the lead isotopic records in Pacific Ferromanganese Crusts. Science 277:913–918CrossRefGoogle Scholar
  76. Chu N, Johnson C, Beard B, German C, Nesbitt R, Frank M, Bohn M, Kubik P, Usui A, Graham I (2006) Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time. Earth Planet Sci Lett 245(1–2):202–217.  https://doi.org/10.1016/j.epsl.2006.02.043CrossRefGoogle Scholar
  77. Clarkson MO, Stirling CH, Jenkyns HC, Dickson AJ, Porcelli D, Moy CM, Pogge von Strandmann PAE, Cooke IR, Lenton TM (2018) Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2. Proc Natl Acad Sci USA 115(12):2918–2923.  https://doi.org/10.1073/pnas.1715278115CrossRefGoogle Scholar
  78. Clayton RE, Nederbrag AJ, Malinovsky D, Andersson P, Thurow J (2007) 10. Data report: iron isotope geochemistry of mid-cretaceous organic-rich sediments at demerara rise (ODP Leg 207). Proc ODP Sci Results 207:1–14.  https://doi.org/10.2973/odp.proc.sr.207.109.2006CrossRefGoogle Scholar
  79. Cochrane JM (2009) Diagenetic carbonates and biogeochemical cycling of organic matter in selected Archean-Paleoterozoic sedimentary successions of the Kaapvaal Craton. University of Johannesburg, South AfricaGoogle Scholar
  80. Cole DB, Reinhard CT, Wang X, Gueguen B, Halverson GP, Gibson T, Hodgskiss MSW, McKenzie NR, Lyons TW, Planavsky NJ (2016) A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44(7):555–558.  https://doi.org/10.1130/g37787.1CrossRefGoogle Scholar
  81. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  82. Conrad CP, Lithgow-Bertelloni C (2007) Faster seafloor spreading and lithosphere production during the mid-Cenozoic. Geology 35(1).  https://doi.org/10.1130/g22759a.1CrossRefGoogle Scholar
  83. Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511(7508):212–215.  https://doi.org/10.1038/nature13482CrossRefGoogle Scholar
  84. Cox GM, Halverson GP, Minarik WG, Le Heron DP, Macdonald FA, Bellefroid EJ, Strauss JV (2013) Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chem Geol 362:232–249.  https://doi.org/10.1016/j.chemgeo.2013.08.002CrossRefGoogle Scholar
  85. Cox GM, Halverson GP, Poirier A, Le Heron D, Strauss JV, Stevenson R (2016a) A model for Cryogenian iron formation. Earth Planet Sci Lett 433:280–292.  https://doi.org/10.1016/j.epsl.2015.11.003CrossRefGoogle Scholar
  86. Cox GM, Halverson GP, Stevenson RK, Vokaty M, Poirier A, Kunzmann M, Li Z-X, Denyszyn SW, Strauss JV, Macdonald FA (2016b) Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth Planet Sci Lett 446:89–99.  https://doi.org/10.1016/j.epsl.2016.04.016CrossRefGoogle Scholar
  87. Cox GM, Isakson V, Hoffman PF, Gernon TM, Schmitz MD, Shahin S, Collins AS, Preiss W, Blades ML, Mitchell RN, Nordsvan A (2018) South Australian U-Pb zircon (CA-ID-TIMS) age supports globally synchronous Sturtian deglaciation. Precambrian Res 315:257–263.  https://doi.org/10.1016/j.precamres.2018.07.007CrossRefGoogle Scholar
  88. Craddock PR, Dauphas N (2011) Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet Sci Lett 303(1–2):121–132.  https://doi.org/10.1016/j.epsl.2010.12.045CrossRefGoogle Scholar
  89. Cramer BS, Miller KG, Barrett PJ, Wright JD (2011) Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J Geophys Res 116(C12).  https://doi.org/10.1029/2011jc007255
  90. Cramer BS, Toggweiler JR, Wright JD, Katz ME, Miller KG (2009) Ocean overturning since the Late Cretaceous: inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24(4).  https://doi.org/10.1029/2008pa001683
  91. Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria 1 1Associate editor: D. E. Canfield. Geochim Cosmochim Acta 68(6):1227–1242.  https://doi.org/10.1016/j.gca.2003.09.011CrossRefGoogle Scholar
  92. Crowe SA, Paris G, Katsev S, Jones C, Kim S, Zerkle AL, Nomosatryo S, Fowie DA, Adkins JF, Sessions AL, Farquhar J, Canfield DE (2014) Sulfate was a trace constituent of Archean seawater. Science 346(6210):735–739CrossRefGoogle Scholar
  93. Czaja AD, Johnson CM, Beard BL, Eigenbrode JL, Freeman KH, Yamaguchi KE (2010) Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼2.7 to 2.5 Ga Hamersley Province, Western Australia. Earth Planet Sci Lett 292(1–2):170–180.  https://doi.org/10.1016/j.epsl.2010.01.032CrossRefGoogle Scholar
  94. Czaja AD, Johnson CM, Beard BL, Roden EE, Li W, Moorbath S (2013) Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770 Ma Isua Supracrustal Belt (West Greenland). Earth Planet Sci Lett 363:192–203.  https://doi.org/10.1016/j.epsl.2012.12.025CrossRefGoogle Scholar
  95. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR, Nägler TF, Beukes NJ, Wille M (2012) Evidence for free oxygen in the Neoarchean ocean based on coupled iron–molybdenum isotope fractionation. Geochim Cosmochim Acta 86:118–137.  https://doi.org/10.1016/j.gca.2012.03.007CrossRefGoogle Scholar
  96. Czaja AD, Van Kranendonk MJ, Beard BL, Johnson CM (2018) A multistage origin for Neoarchean layered hematite-magnetite iron formation from the Weld Range, Yilgarn Craton, Western Australia. Chem Geol 488:125–137.  https://doi.org/10.1016/j.chemgeo.2018.04.019CrossRefGoogle Scholar
  97. Dahl TW, Boyle RA, Canfield DE, Connelly JN, Gill BC, Lenton TM, Bizzarro M (2014) Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event. Earth Planet Sci Lett 401:313–326.  https://doi.org/10.1016/j.epsl.2014.05.043CrossRefGoogle Scholar
  98. Daines SJ, Lenton TM (2016) The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet Sci Lett 434:42–51.  https://doi.org/10.1016/j.epsl.2015.11.021CrossRefGoogle Scholar
  99. Daines SJ, Mills BJ, Lenton TM (2017) Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat Commun 8:14379.  https://doi.org/10.1038/ncomms14379CrossRefGoogle Scholar
  100. Dale AW, Nickelsen L, Scholz F, Hensen C, Oschlies A, Wallmann K (2015) A revised global estimate of dissolved iron fluxes from marine sediments. Global Biogeochem Cycles 29:691–707.  https://doi.org/10.1002/2014GB005017CrossRefGoogle Scholar
  101. Dauphas N, Cates NL, Mojzsis SJ, Busigny V (2007a) Identification of chemical sedimentary protoliths using iron isotopes in the >3750 Ma Nuvvuagittuq supracrustal belt, Canada. Earth Planet Sci Lett 254(3–4):358–376.  https://doi.org/10.1016/j.epsl.2006.11.042CrossRefGoogle Scholar
  102. Dauphas N, van Zuilen M, Busigny V, Lepland A, Wadhwa M, Janney PE (2007b) Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: protolith identification and metamorphic overprint. Geochim Cosmochim Acta 71(19):4745–4770.  https://doi.org/10.1016/j.gca.2007.07.019CrossRefGoogle Scholar
  103. Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Marty B, Janney PE (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080CrossRefGoogle Scholar
  104. Davis AS, Gray LB, Clague DA, Hein JR (2002) The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem Geophys Geosyst 3(3):1–28.  https://doi.org/10.1029/2001GC000190CrossRefGoogle Scholar
  105. Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68(18):3621–3641.  https://doi.org/10.1016/j.gca.2004.03.003CrossRefGoogle Scholar
  106. De Vleeschouwer D, Vahlenkamp M, Crucifix M, Pälike H (2017) Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45(4):375–378.  https://doi.org/10.1130/g38663.1CrossRefGoogle Scholar
  107. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO. Nature 421:245–249CrossRefGoogle Scholar
  108. DeConto RM, Pollard D, Wilson PA, Palike H, Lear CH, Pagani M (2008) Thresholds for Cenozoic bipolar glaciation. Nature 455(7213):652–656.  https://doi.org/10.1038/nature07337CrossRefGoogle Scholar
  109. Delaney ML, Boyle RA (1986) Lithium in foraminiferal shells: implications for high-temperature hydrothermal circulation fluxes and oceanic crustal generation rates. Earth Planet Sci Lett 80:91–105CrossRefGoogle Scholar
  110. Dellwig O, Leipe T, März C, Glockzin M, Pollehne F, Schnetger B, Yakushev EV, Böttcher ME, Brumsack H-J (2010) A new particulate Mn–Fe–P-shuttle at the redoxcline of anoxic basins. Geochim Cosmochim Acta 74(24):7100–7115.  https://doi.org/10.1016/j.gca.2010.09.017CrossRefGoogle Scholar
  111. Derry LA, France-Lanord C (1996) Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography 11(3):267–275.  https://doi.org/10.1029/95pa03839CrossRefGoogle Scholar
  112. Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochim Cosmochim Acta 54:2965–2977CrossRefGoogle Scholar
  113. Derry LA, Kaufman AJ, Jacobsen SB (1992) Sedimentary cycling and environmental change in the Late Proterozoic: evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta 56:131–1329CrossRefGoogle Scholar
  114. Dessert C, Dupré B, Gaillardet J, François LM, Allègre CJ (2003) Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem Geol 202(3–4):257–273.  https://doi.org/10.1016/j.chemgeo.2002.10.001CrossRefGoogle Scholar
  115. Dhuime B, Hawkesworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 Billion years ago. Science 335(6074):1334–1336CrossRefGoogle Scholar
  116. Diamond CW, Lyons TW (2018) Mid-Proterozoic redox evolution and the possibility of transient oxygenation events. Emerg Top Life Sci 2(2):235–245.  https://doi.org/10.1042/etls20170146CrossRefGoogle Scholar
  117. Dickson AJ, Cohen AS (2012) A molybdenum isotope record of Eocene Thermal Maximum 2: implications for global ocean redox during the early Eocene. Paleoceanography 27(3):n/a-n/a.  https://doi.org/10.1029/2012pa002346CrossRefGoogle Scholar
  118. Dickson AJ, Jenkyns HC, Porcelli D, van den Boorn S, Idiz E (2016) Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous). Geochim Cosmochim Acta 178:291–306.  https://doi.org/10.1016/j.gca.2015.12.036CrossRefGoogle Scholar
  119. Dickson AJ, Saker-Clark M, Jenkyns HC, Bottini C, Erba E, Russo F, Gorbanenko O, Naafs BDA, Pancost RD, Robinson SA, van den Boorn SHJM, Idiz E, Heimhofer U (2017) A Southern Hemisphere record of global trace-metal drawdown and orbital modulation of organic-matter burial across the Cenomanian-Turonian boundary (Ocean Drilling Program Site 1138, Kerguelen Plateau). Sedimentology 64(1):186–203.  https://doi.org/10.1111/sed.12303CrossRefGoogle Scholar
  120. Djokic T, Van Kranendonk MJ, Campbell KA, Walter MR, Ward CR (2017) Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat Commun 8:15263.  https://doi.org/10.1038/ncomms15263
  121. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CT (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643):60–64.  https://doi.org/10.1038/nature21377CrossRefGoogle Scholar
  122. Du Vivier ADC, Jacobson AD, Lehn GO, Selby D, Hurtgen MT, Sageman BB (2015a) Ca isotope stratigraphy across the Cenomanian-Turonian OAE 2: Links between volcanism, seawater geochemistry, and the carbonate fractionation factor. Earth Planet Sci Lett 416:121–131.  https://doi.org/10.1016/j.epsl.2015.02.001CrossRefGoogle Scholar
  123. Du Vivier ADC, Selby D, Condon DJ, Takashima R, Nishi H (2015b) Pacific 187 Os/188 Os isotope chemistry and U-Pb geochronology: synchroneity of global Os isotope change across OAE 2. Earth Planet Sci Lett 428:204–216.  https://doi.org/10.1016/j.epsl.2015.07.020CrossRefGoogle Scholar
  124. Du Vivier ADC, Selby D, Sageman BB, Jarvis I, Gröcke DR, Voigt S (2014) Marine 187Os/188Os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during Oceanic Anoxic Event 2. Earth Planet Sci Lett 389:23–33.  https://doi.org/10.1016/j.epsl.2013.12.024CrossRefGoogle Scholar
  125. Duan Y (2010) Isotope systematics of iron and molybdenum in black shales: inferring redox evolution in ancient sedimentary environments. Arizona State UniversityGoogle Scholar
  126. Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta 74(23):6655–6668.  https://doi.org/10.1016/j.gca.2010.08.035CrossRefGoogle Scholar
  127. Duggen S, Olgun N, Croot P, Hoffmann L, Dietze H, Delmelle P, Teschner C (2010) The role of airborne volcanic ash for the surface ocean biogeochemical iron-cycle: a review. Biogeosciences 7:827–844CrossRefGoogle Scholar
  128. Dymek RF, Klein C (1998) Chemistry, petrology and origin of banded iron-formation lithologies from the 3800 Ma Isua Supracrustal Belt, West Greenland. Precambrian Res 39:247–302CrossRefGoogle Scholar
  129. Eickmann B, Hofmann A, Wille M, Bui TH, Wing BA, Schoenberg R (2018) Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat Geosci 11(2):133–138.  https://doi.org/10.1038/s41561-017-0036-xCrossRefGoogle Scholar
  130. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci USA 103(43):15759–15764.  https://doi.org/10.1073/pnas.0607540103CrossRefGoogle Scholar
  131. Eiler JM, Mojzsis SJ, Arrhenius G (1997) Carbon isotope evidence for early life. Nature 386:665CrossRefGoogle Scholar
  132. Eldrett JS, Ma C, Bergman SC, Lutz B, Gregory FJ, Dodsworth P, Phipps M, Hardas P, Minisini D, Ozkan A, Ramezani J, Bowring SA, Kamo SL, Ferguson K, Macaulay C, Kelly AE (2015) An astronomically calibrated stratigraphy of the Cenomanian, Turonian and earliest Coniacian from the Cretaceous Western Interior Seaway, USA: implications for global chronostratigraphy. Cretac Res 56:316–344.  https://doi.org/10.1016/j.cretres.2015.04.010CrossRefGoogle Scholar
  133. Ellwood MJ, Hutchins DA, Lohan MC, Milne A, Nasemann P, Nodder SD, Sander SG, Strzepek R, Wilhelm SW, Boyd PW (2015) Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proc Natl Acad Sci USA 112(1):E15–20.  https://doi.org/10.1073/pnas.1421576112CrossRefGoogle Scholar
  134. Eroglu S, Schoenberg R, Pascarelli S, Beukes NJ, Kleinhanns IC, Swanner ED (2018) Open ocean vs. continentally-derived iron cycles along the Neoarchean Campbellrand-Malmani Carbonate platform, South Africa. Am J Sci 318(4):367–408.  https://doi.org/10.2475/04.2018.01CrossRefGoogle Scholar
  135. Eroglu S, Schoenberg R, Wille M, Beukes N, Taubald H (2015) Geochemical stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58–2.50 Ga-old Transvaal Supergroup carbonate platform, South Africa. Precambrian Res 266:27–46.  https://doi.org/10.1016/j.precamres.2015.04.014CrossRefGoogle Scholar
  136. Eroglu S, van Zuilen MA, Taubald H, Drost K, Wille M, Swanner ED, Beukes NJ, Schoenberg R (2017) Depth-dependent δ13C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation. Precambrian Res 302:122–139.  https://doi.org/10.1016/j.precamres.2017.09.018CrossRefGoogle Scholar
  137. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097CrossRefGoogle Scholar
  138. Evans DA, Beukes NJ, Kirschvink JL (1997) Low-latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266CrossRefGoogle Scholar
  139. Fabre S, Nédélec A, Poitrasson F, Strauss H, Thomazo C, Nogueira A (2011) Iron and sulphur isotopes from the Carajás mining province (Pará, Brazil): implications for the oxidation of the ocean and the atmosphere across the Archaean-Proterozoic transition. Chem Geol 289(1–2):124–139.  https://doi.org/10.1016/j.chemgeo.2011.07.019CrossRefGoogle Scholar
  140. Fakhraee M, Hancisse O, Canfield DE, Crowe SA, Katsev S (2019) Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat Geosci 12(5):375–380.  https://doi.org/10.1038/s41561-019-0351-5CrossRefGoogle Scholar
  141. Fan H, Zhu X, Wen H, Yan B, Li J, Feng L (2014) Oxygenation of Ediacaran Ocean recorded by iron isotopes. Geochim Cosmochim Acta 140:80–94.  https://doi.org/10.1016/j.gca.2014.05.029CrossRefGoogle Scholar
  142. Farber K, Dziggel A, Meyer FM, Harris C (2016) Petrology, geochemistry and fluid inclusion analysis of altered komatiites of the Mendon Formation in the BARB4 drill core, Barberton Greenstone Belt, South Africa. S Afr J Geol 119(4):639–654.  https://doi.org/10.2113/gssajg.ll9.4.639CrossRefGoogle Scholar
  143. Farquhar J, Bao H, Thiemens M (2000) Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science 289:756–758CrossRefGoogle Scholar
  144. Farquhar J, Cliff J, Zerkle AL, Kamyshny A, Poulton SW, Claire M, Adams D, Harms B (2013) Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc Natl Acad Sci USA 110(44):17638–17643.  https://doi.org/10.1073/pnas.1218851110CrossRefGoogle Scholar
  145. Farquhar J, Zerkle AL, Bekker A (2010) Geological constraints on the origin of oxygenic photosynthesis. J Geodyn 107:11–36Google Scholar
  146. Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107(1):11–36.  https://doi.org/10.1007/s11120-010-9594-0CrossRefGoogle Scholar
  147. Fedo CM, Whitehouse MJ (2002) Mesasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science 296:1448–1452CrossRefGoogle Scholar
  148. Fehr MA, Andersson PS, Hålenius U, Gustafsson Ö, Mörth C-M (2010) Iron enrichments and Fe isotopic compositions of surface sediments from the Gotland Deep, Baltic Sea. Chemical Geology 277(3–4):310–322.  https://doi.org/10.1016/j.chemgeo.2010.08.014CrossRefGoogle Scholar
  149. Fehr MA, Andersson PS, Hålenius U, Mörth C-M (2008) Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea. Geochim Cosmochim Acta 72(3):807–826.  https://doi.org/10.1016/j.gca.2007.11.033CrossRefGoogle Scholar
  150. Ferrari L, Valencia-Moreno M, Bryan S (2007) Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. In: Special Paper 422: Geology of México: Celebrating the Centenary of the Geological Society of México, pp 1–39.  https://doi.org/10.1130/2007.2422(01)
  151. Fischer WW, Hemp J, Johnson JE (2016) Evolution of oxygenic photosynthesis. Annu Rev Earth Planet Sci 44(1):647–683.  https://doi.org/10.1146/annurev-earth-060313-054810CrossRefGoogle Scholar
  152. Fischer WW, Schroeder S, Lacassie JP, Beukes NJ, Goldberg T, Strauss H, Horstmann UE, Schrag DP, Knoll AH (2009) Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Res 169(1–4):15–27.  https://doi.org/10.1016/j.precamres.2008.10.010CrossRefGoogle Scholar
  153. Flament N, Coltice N, Rey PF (2008) A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet Sci Lett 275(3–4):326–336.  https://doi.org/10.1016/j.epsl.2008.08.029CrossRefGoogle Scholar
  154. Flament N, Coltice N, Rey PF (2013) The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Res 229:177–188.  https://doi.org/10.1016/j.precamres.2011.10.009CrossRefGoogle Scholar
  155. Fralick P, Planavsky N, Burton J, Jarvis I, Addison WD, Barrett TJ, Brumpton GR (2017) Geochemistry of Paleoproterozoic Gunflint Formation carbonate: implications for hydrosphere-atmosphere evolution. Precambrian Res 290:126–146.  https://doi.org/10.1016/j.precamres.2016.12.014CrossRefGoogle Scholar
  156. France-Lanord C, Derry LA (1997) Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390:65–67CrossRefGoogle Scholar
  157. Frank M (2002) Radiogenic isotopes: traces of past ocean circulation and erosional input. Rev Geophys 40(1):1–38CrossRefGoogle Scholar
  158. Frank M, O’Nions RK, Hein JR, Banakar VK (1999) 60 Myr records of major elements and Pb–Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleochemistry. Geochim Cosmochim Acta 63(11/12):1689–1708CrossRefGoogle Scholar
  159. Frei R, Bridgwater D, Rosing M, Stecher O (1999) Controversial Pb-Pb and Sm-Nd isotope results in the early Archean Isua (West Greenland) oxide iron formation: preservation of primary signatures versus secondary disturbances. Geochim Cosmochim Acta 63(3/4):473–488CrossRefGoogle Scholar
  160. Frei R, Crowe SA, Bau M, Polat A, Fowle DA, Dossing LN (2016) Oxidative elemental cycling under the low O2 Eoarchean atmosphere. Sci Rep 6:21058.  https://doi.org/10.1038/srep21058CrossRefGoogle Scholar
  161. Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461(7261):250–253.  https://doi.org/10.1038/nature08266CrossRefGoogle Scholar
  162. Frei R, Rosing MT (2001) The least radiogenic terrestrial leads; implications for the early Archean crustal evolution and hydrothermal–metasomatic processes in the Isua Supracrustal Belt (West Greenland). Chem Geol 181:47–66CrossRefGoogle Scholar
  163. French BM (1971) Stability relations of siderite (FeCO3) in the system Fe-C-O. Am J Sci 271:37–78CrossRefGoogle Scholar
  164. Friedrich O, Norris RD, Erbacher J (2012) Evolution of middle to Late Cretaceous oceans—A 55 m.y. record of Earth’s temperature and carbon cycle. Geology 40(2):107–110.  https://doi.org/10.1130/g32701.1CrossRefGoogle Scholar
  165. Frierdich AJ, Beard BL, Reddy TR, Scherer MM, Johnson CM (2014a) Iron isotope fractionation between aqueous Fe(II) and goethite revisited: new insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification. Geochim Cosmochim Acta 139:383–398.  https://doi.org/10.1016/j.gca.2014.05.001CrossRefGoogle Scholar
  166. Frierdich AJ, Beard BL, Scherer MM, Johnson CM (2014b) Determination of the Fe(II)aq–magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium. Earth Planet Sci Lett 391:77–86.  https://doi.org/10.1016/j.epsl.2014.01.032CrossRefGoogle Scholar
  167. Frierdich AJ, Spicuzza MJ, Scherer MM (2016) Oxygen isotope evidence for Mn(II)-catalyzed recrystallization of manganite (gamma-MnOOH). Environ Sci Technol 50(12):6374–6380.  https://doi.org/10.1021/acs.est.6b01463CrossRefGoogle Scholar
  168. Frimmel HE (2005) Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci Rev 70(1–2):1–46.  https://doi.org/10.1016/j.earscirev.2004.10.003CrossRefGoogle Scholar
  169. Frogner P, Gislason SR, Oskarsson N (2001) Fertilizing potential of volcanic ash in ocean surface water. Geology 29(6):487–490CrossRefGoogle Scholar
  170. Frost CD, von Blanckenburg F, Schoenberg R, Frost BR, Swapp SM (2007) Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contrib Miner Petrol 153(2):211–235.  https://doi.org/10.1007/s00410-006-0141-0CrossRefGoogle Scholar
  171. Gaillard F, Scaillet B, Arndt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478(7368):229–232.  https://doi.org/10.1038/nature10460CrossRefGoogle Scholar
  172. Galer SJG, Mezger K (1998) Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambrian Res 92(1998):389–412CrossRefGoogle Scholar
  173. Galić A, Mason PRD, Mogollón JM, Wolthers M, Vroon PZ, Whitehouse MJ (2017) Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton. Chem Geol 449:135–146.  https://doi.org/10.1016/j.chemgeo.2016.12.006CrossRefGoogle Scholar
  174. Gall L, Williams HM, Siebert C, Halliday AN, Herrington RJ, Hein JR (2013) Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic. Earth Planet Sci Lett 375:148–155.  https://doi.org/10.1016/j.epsl.2013.05.019CrossRefGoogle Scholar
  175. Garçon M, Carlson RW, Shirey SB, Arndt NT, Horan MF, Mock TD (2017) Erosion of Archean continents: the Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks. Geochim Cosmochim Acta 206:216–235.  https://doi.org/10.1016/j.gca.2017.03.006CrossRefGoogle Scholar
  176. Garrels RM, Lerman A (1981) Phanerozoic cycles of sedimentary carbon and sulfur. Proc Natl Acad Sci USA 78(8):4652–4656CrossRefGoogle Scholar
  177. Glikson A, Hickman A, Evans NJ, Kirkland CL, Park J-W, Rapp R, Romano S (2016) A new∼3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: a petrological, microprobe and laser ablation ICPMS study. Precambrian Res 279:103–122.  https://doi.org/10.1016/j.precamres.2016.04.003CrossRefGoogle Scholar
  178. Goldberg T, Archer C, Vance D, Poulton SW (2009) Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim Cosmochim Acta 73(21):6502–6516.  https://doi.org/10.1016/j.gca.2009.08.004CrossRefGoogle Scholar
  179. Goldberg T, Archer C, Vance D, Thamdrup B, McAnena A, Poulton SW (2012) Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chem Geol 296–297:73–82.  https://doi.org/10.1016/j.chemgeo.2011.12.020CrossRefGoogle Scholar
  180. Goldberg T, Poulton SW, Wagner T, Kolonic SF, Rehkämper M (2016) Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2. Earth Planet Sci Lett 440:81–91.  https://doi.org/10.1016/j.epsl.2016.02.006CrossRefGoogle Scholar
  181. Gomes ML, Fike DA, Bergmann KD, Jones C, Knoll AH (2018) Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. Geobiology 16(1):17–34.  https://doi.org/10.1111/gbi.12265CrossRefGoogle Scholar
  182. Gomes ML, Hurtgen MT, Sageman BB (2016) Biogeochemical sulfur cycling during Cretaceous oceanic anoxic events: a comparison of OAE1a and OAE2. Paleoceanography 31:233–251.  https://doi.org/10.1002/2015PA002869CrossRefGoogle Scholar
  183. Goto KT, Anbar AD, Gordon GW, Romaniello SJ, Shimoda G, Takaya Y, Tokumaru A, Nozaki T, Suzuki K, Machida S, Hanyu T, Usui A (2014) Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: implications for the marine 238 U/ 235 U isotope system. Geochim Cosmochim Acta 146:43–58.  https://doi.org/10.1016/j.gca.2014.10.003CrossRefGoogle Scholar
  184. Greber ND, Dauphas N, Bekker A, Ptacek MP, Bindeman IN, Hofmann A (2017) Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 357(6357):1271–1274.  https://doi.org/10.1126/science.aan8086CrossRefGoogle Scholar
  185. Gross GA (1980) A classification of iron formations based on depositional environments. Can Mineral 18:215–222Google Scholar
  186. Grotzinger JP, Fike DA, Fischer WW (2011) Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci 4(5):285–292.  https://doi.org/10.1038/ngeo1138CrossRefGoogle Scholar
  187. Guilbaud R, Poulton SW, Butterfield NJ, Zhu M, Shields-Zhou GA (2015) A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat Geosci 8(6):466–470.  https://doi.org/10.1038/ngeo2434CrossRefGoogle Scholar
  188. Gumsley AP, Chamberlain KR, Bleeker W, Soderlund U, de Kock MO, Larsson ER, Bekker A (2017) Timing and tempo of the Great Oxidation Event. Proc Natl Acad Sci USA 114(8):1811–1816.  https://doi.org/10.1073/pnas.1608824114CrossRefGoogle Scholar
  189. Guy BM (2012) Pyrite in the Mesoarchean Witwatersrand Supergroup. University of Johannesburg, South AfricaGoogle Scholar
  190. Guy BM, Ono S, Gutzmer J, Kaufman AJ, Lin Y, Fogel ML, Beukes NJ (2012) A multiple sulfur and organic carbon isotope record from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. Precambrian Res 216–219:208–231.  https://doi.org/10.1016/j.precamres.2012.06.018CrossRefGoogle Scholar
  191. Halverson GP, Poitrasson F, Hoffman PF, Nédélec A, Montel J-M, Kirby J (2011) Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth Planet Sci Lett 309(1–2):100–112.  https://doi.org/10.1016/j.epsl.2011.06.021CrossRefGoogle Scholar
  192. Handoh IC, Lenton TM (2003) Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Global Biogeochem Cycles 17(4):n/a-n/a.  https://doi.org/10.1029/2003gb002039CrossRefGoogle Scholar
  193. Hao J, Sverjensky DA, Hazen RM (2017) A model for late Archean chemical weathering and world average river water. Earth Planet Sci Lett 457:191–203.  https://doi.org/10.1016/j.epsl.2016.10.021CrossRefGoogle Scholar
  194. Harada M, Tajika E, Sekine Y (2015) Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic Snowball Earth. Earth Planet Sci Lett 419:178–186.  https://doi.org/10.1016/j.epsl.2015.03.005CrossRefGoogle Scholar
  195. Hardisty DS, Lu Z, Bekker A, Diamond CW, Gill BC, Jiang G, Kah LC, Knoll AH, Loyd SJ, Osburn MR, Planavsky NJ, Wang C, Zhou X, Lyons TW (2017) Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet Sci Lett 463:159–170.  https://doi.org/10.1016/j.epsl.2017.01.032CrossRefGoogle Scholar
  196. Hashman BM (2017) A mesoarchean microbial iron shuttle, Witwatersrand basin, South Africa. M.S., University of Wisconsin-MadisonGoogle Scholar
  197. Haugaard R, Pecoits E, Lalonde S, Rouxel O, Konhauser K (2016) The Joffre banded iron formation, Hamersley Group, Western Australia: assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Res 273:12–37.  https://doi.org/10.1016/j.precamres.2015.10.024CrossRefGoogle Scholar
  198. Havig JR, Hamilton TL, Bachan A, Kump LR (2017) Sulfur and carbon isotopic evidence for metabolic pathway evolution and a four-stepped Earth system progression across the Archean and Paleoproterozoic. Earth Sci Rev 174:1–21.  https://doi.org/10.1016/j.earscirev.2017.06.014CrossRefGoogle Scholar
  199. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp AIS (2017) Earth’s continental lithosphere through time. Annu Rev Earth Planet Sci 45:169–198. https://doi.org/10.1146/annurev-earth-063016-020525CrossRefGoogle Scholar
  200. Hayashi T, Tanimizu M, Tanaka T (2004) Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La–Ce and Sm–Nd isotope systematics. Precambrian Res 135(4):345–357.  https://doi.org/10.1016/j.precamres.2004.09.004CrossRefGoogle Scholar
  201. Hayes JM (1994) Global methanotrophy at the Archean–Proterozoic transition. In: Bengtson S (ed) Early life on earth. Columbia University Press, Nobel Symposium, pp 220–236Google Scholar
  202. Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Philos Trans R Soc Lond B Biol Sci 361(1470):931–950.  https://doi.org/10.1098/rstb.2006.1840CrossRefGoogle Scholar
  203. Heck PR, Huberty JM, Kita NT, Ushikubo T, Kozdon R, Valley JW (2011) SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochim Cosmochim Acta 75(20):5879–5891.  https://doi.org/10.1016/j.gca.2011.07.023CrossRefGoogle Scholar
  204. Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72(17):4379–4396.  https://doi.org/10.1016/j.gca.2008.06.009CrossRefGoogle Scholar
  205. Heimann A, Johnson CM, Beard BL, Valley JW, Roden EE, Spicuzza MJ, Beukes NJ (2010) Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth Planet Sci Lett 294(1–2):8–18.  https://doi.org/10.1016/j.epsl.2010.02.015CrossRefGoogle Scholar
  206. Henkel S, Kasten S, Poulton SW, Staubwasser M (2016) Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chem Geol 421:93–102.  https://doi.org/10.1016/j.chemgeo.2015.12.003CrossRefGoogle Scholar
  207. Herrick MJ (2007) Isotopic studies of the 3.7-3.8 Ga ISUA banded iron formation provide insight into early archean geochemical cycles. M.S., University of Wisconsin-Madison,Google Scholar
  208. Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292(1–2):79–88.  https://doi.org/10.1016/j.epsl.2010.01.022CrossRefGoogle Scholar
  209. Hessler AM, Lowe DR (2006) Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research 151 (3–4):185–210.  https://doi.org/10.1016/j.precamres.2006.08.008CrossRefGoogle Scholar
  210. Heubeck C, Engelhardt J, Byerly GR, Zeh A, Sell B, Luber T, Lowe DR (2013) Timing of deposition and deformation of the Moodies Group (Barberton Greenstone Belt, South Africa): very-high-resolution of Archaean surface processes. Precambrian Res 231:236–262.  https://doi.org/10.1016/j.precamres.2013.03.021CrossRefGoogle Scholar
  211. Heubeck C, Lowe DR (1994) Depositional and tectonic setting of the Archean Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Res 68:257–290CrossRefGoogle Scholar
  212. Hiebert RS, Bekker A, Houlé MG, Rouxel OJ (2018) Depositional setting of the Late Archean Fe oxide- and sulfide-bearing chert and graphitic argillite in the Shaw Dome, Abitibi Greenstone Belt, Canada. Precambrian Res 311:98–116.  https://doi.org/10.1016/j.precamres.2018.04.004CrossRefGoogle Scholar
  213. Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH, Utsunomiya S, Ohmoto H (2009) Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat Geosci 2(4):301–306.  https://doi.org/10.1038/ngeo465CrossRefGoogle Scholar
  214. Hoffman PF (2013) The great oxidation and a siderian Snowball Earth: MIF-S based correlation of Paleoproterozoic glacial epochs. Chem Geol 362:143–156.  https://doi.org/10.1016/j.chemgeo.2013.04.018CrossRefGoogle Scholar
  215. Hoffman PF, Abbot DS, Ashkenazy Y, Benn DI, Brocks JJ, Cohen PA, Cox GM, Cheveling JR, Donnadieu Y, Erwin DH, Fairchild IJ, Ferreira D, Goodman JC, Halverson GP, Jansen MF, Le Hir G, Love GD, Macdonald FA, Maloof AC, Partin CA, Ramstein G, Rose BEJ, Rose CV, Sadler PM, Tziperman E, Voigt A, Warren SG (2017) Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances 3:1–43CrossRefGoogle Scholar
  216. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic Snowball Earth. Science 281(5381):1342–1346.  https://doi.org/10.1126/science.281.5381.1342CrossRefGoogle Scholar
  217. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  218. Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66(21):3811–3826CrossRefGoogle Scholar
  219. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915CrossRefGoogle Scholar
  220. Holland HD, Beukes NJ (1990) A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. Am J Sci 290-A:1–34Google Scholar
  221. Holmden C, Jacobson AD, Sageman BB, Hurtgen MT (2016) Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway. Geochim Cosmochim Acta 186:277–295.  https://doi.org/10.1016/j.gca.2016.04.039CrossRefGoogle Scholar
  222. Hong SK, Lee YI (2012) Evaluation of atmospheric carbon dioxide concentrations during the Cretaceous. Earth Planet Sci Lett 327–328:23–28.  https://doi.org/10.1016/j.epsl.2012.01.014CrossRefGoogle Scholar
  223. Horita J, Zimmerman A, Holland HD (2002) Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites. Geochim Cosmochim Acta 66(21):3733–3756. https://doi.org/10.1016/S0016-7037(01)00884-5CrossRefGoogle Scholar
  224. Horner TJ, Williams HM, Hein JR, Saito MA, Burton KW, Halliday AN, Nielsen SG (2015) Persistence of deeply sourced iron in the Pacific Ocean. Proc Natl Acad Sci USA 112(5):1292–1297.  https://doi.org/10.1073/pnas.1420188112CrossRefGoogle Scholar
  225. Huang J, Feng L, Chu X, Sun T, Wen H, Qin L, Shen Y (2017) A predominantly ferruginous condition in the Ediacaran deep ocean: geochemistry of black shales in the Ediacaran Doushantuo Formation, South China. Precambrian Res 295:12–23.  https://doi.org/10.1016/j.precamres.2017.04.019CrossRefGoogle Scholar
  226. Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge Member of the Brockman Iron Formation, Hamersley Group, Western Australia. Am Mineral 97(1):26–37.  https://doi.org/10.2138/am.2012.3864CrossRefGoogle Scholar
  227. Husson JM, Peters SE (2017) Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet Sci Lett 460:68–75.  https://doi.org/10.1016/j.epsl.2016.12.012CrossRefGoogle Scholar
  228. Husson JM, Peters SE (2018) Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg Top Life Sci 2(2):125–136.  https://doi.org/10.1042/etls20170152CrossRefGoogle Scholar
  229. Hyslop EV, Valley JW, Johnson CM, Beard BL (2008) The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota. Contrib Miner Petrol 155(3):313–328.  https://doi.org/10.1007/s00410-007-0244-2CrossRefGoogle Scholar
  230. Hyun J-H, Kim S-H, Mok J-S, Cho H, Lee T, Vandieken V, Thamdrup B (2017) Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea. Biogeosciences 14(4):941–958.  https://doi.org/10.5194/bg-14-941-2017CrossRefGoogle Scholar
  231. Iizuka T, Yamaguchi T, Itano K, Hibiya Y, Suzuki K (2017) What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos 274–275:304–327.  https://doi.org/10.1016/j.lithos.2017.01.006CrossRefGoogle Scholar
  232. Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103:169–185CrossRefGoogle Scholar
  233. Jacobsen SB, Pimentel-Klose MR (1988) Nd isotopic variations in preCambrian banded iron formations. Geophys Res Lett 15(4):393–396CrossRefGoogle Scholar
  234. Jacobson AD, Blum JD (2000) Ca/Sr and 87Sr/86Sr geochemistry of disseminated calcite in Himalayan silicate rocks from Nanga Parbat: Influence on river-water chemistry. Geology 28:463–466CrossRefGoogle Scholar
  235. Jacobson AD, Blum JD, Chamberlain CP, Poage MA, Sloan VF (2002) Ca/Sr and Sr isotope systematics of a Himalayan glacial chronosequence: carbonate versus silicate weathering rates as a function of landscape surface age. Geochim Cosmochim Acta 66:13–27CrossRefGoogle Scholar
  236. Jarvis I, Lignum JS, Gröcke DR, Jenkyns HC, Pearce MA (2011) Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. Paleoceanography 26(3):n/a-n/a.  https://doi.org/10.1029/2010pa002081CrossRefGoogle Scholar
  237. Jenkyns HC (2010) Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst 11(3):n/a-n/a.  https://doi.org/10.1029/2009gc002788CrossRefGoogle Scholar
  238. Jenkyns HC (2018) Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian). Philos Trans A Math Phys Eng Sci 376(2130).  https://doi.org/10.1098/rsta.2017.0073CrossRefGoogle Scholar
  239. Jenkyns HC, Dickson AJ, Ruhl M, van den Boorn SHJM, Heimhofer U (2017) Basalt-seawater interaction, the Plenus Cold Event, enhanced weathering and geochemical change: deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous). Sedimentology 64(1):16–43.  https://doi.org/10.1111/sed.12305CrossRefGoogle Scholar
  240. Jenkyns HC, Matthews A, Tsikos H, Erel Y (2007) Nitrate reduction, sulfate reduction, and sedimentary iron isotope evolution during the Cenomanian-Turonian oceanic anoxic event. Paleoceanography 22(3):n/a-n/a.  https://doi.org/10.1029/2006pa001355CrossRefGoogle Scholar
  241. Jicha BR, Scholl DW, Rea DK (2009) Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary. Geology 37(4):303–306.  https://doi.org/10.1130/g25392a.1CrossRefGoogle Scholar
  242. Johnson CM, Beard BL, Beukes NJ, Klein C, O’Leary JM (2003) Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contrib Miner Petrol 144(5):523–547.  https://doi.org/10.1007/s00410-002-0418-xCrossRefGoogle Scholar
  243. Johnson CM, Beard BL, Klein C, Beukes NJ, Roden EE (2008a) Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim Cosmochim Acta 72(1):151–169.  https://doi.org/10.1016/j.gca.2007.10.013CrossRefGoogle Scholar
  244. Johnson CM, Beard BL, Roden EE (2008b) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annu Rev Earth Planet Sci 36(1):457–493.  https://doi.org/10.1146/annurev.earth.36.031207.124139CrossRefGoogle Scholar
  245. Johnson CM, Ludois JM, Beard BL, Beukes NJ, Heimann A (2013a) Iron formation carbonates: paleoceanographic proxy or recorder of microbial diagenesis? Geology 41(11):1147–1150.  https://doi.org/10.1130/g34698.1CrossRefGoogle Scholar
  246. Johnson CM, Van Kranendonk MJ (2019) Ancient life and plate tectonics. In: Kolb VM (ed) Hanbook of astrobiology. CRC PressGoogle Scholar
  247. Johnson JE, Webb SM, Ma C, Fischer WW (2016) Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim Cosmochim Acta 173:210–231.  https://doi.org/10.1016/j.gca.2015.10.027CrossRefGoogle Scholar
  248. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013b) Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc Natl Acad Sci USA 110(28):11238–11243.  https://doi.org/10.1073/pnas.1305530110CrossRefGoogle Scholar
  249. Johnston DT, Poulton SW, Dehler C, Porter S, Husson J, Canfield DE, Knoll AH (2010) An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sci Lett 290(1–2):64–73.  https://doi.org/10.1016/j.epsl.2009.11.059CrossRefGoogle Scholar
  250. Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE (2015) Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43(2):135–138.  https://doi.org/10.1130/g36044.1CrossRefGoogle Scholar
  251. Jones CE, Jenkyns HC (2001) Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am J Sci 301:112–149CrossRefGoogle Scholar
  252. Kah LC, Lyons TW, Frank TD (2004) Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431:834–838CrossRefGoogle Scholar
  253. Kamber BS (2010) Archean mafic–ultramafic volcanic landmasses and their effect on ocean–atmosphere chemistry. Chem Geol 274(1–2):19–28.  https://doi.org/10.1016/j.chemgeo.2010.03.009CrossRefGoogle Scholar
  254. Kanzaki Y, Murakami T (2016) Estimates of atmospheric O 2 in the Paleoproterozoic from paleosols. Geochim Cosmochim Acta 174:263–290.  https://doi.org/10.1016/j.gca.2015.11.022CrossRefGoogle Scholar
  255. Kappler A, Johnson CM, Crosby HA, Beard BL, Newman DK (2010) Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochim Cosmochim Acta 74(10):2826–2842.  https://doi.org/10.1016/j.gca.2010.02.017CrossRefGoogle Scholar
  256. Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33(11).  https://doi.org/10.1130/g21658.1CrossRefGoogle Scholar
  257. Karhu JA, Holland HD (1996) Carbon isotopes and the rise of atmospheric oxygen. Geology 24(10):867–870CrossRefGoogle Scholar
  258. Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257CrossRefGoogle Scholar
  259. Kaufman AJ, Johnston DT, Farquhar J, Masterson AL, Lyons TW, Bates S, Anbar AD, Arnold GL, Garvin J, Buick R (2007) Late Archean biospheric oxygenation and atmospheric evolution. Science 317:1900–1903CrossRefGoogle Scholar
  260. Kendall B, Brennecka GA, Weyer S, Anbar AD (2013) Uranium isotope fractionation suggests oxidative uranium mobilization at 2.50 Ga. Chem Geol 362:105–114.  https://doi.org/10.1016/j.chemgeo.2013.08.010CrossRefGoogle Scholar
  261. Kendall B, Creaser RA, Reinhard CT, Lyons TW, Anbar AD (2015a) Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci Adv 1(10).  https://doi.org/10.1126/sciadv.1500777CrossRefGoogle Scholar
  262. Kendall B, Dahl TW, Anbar AD (2017) The stable isotope geochemistry of molybdenum. Rev Miner Geochem 82(1):683–732.  https://doi.org/10.2138/rmg.2017.82.16CrossRefGoogle Scholar
  263. Kendall B, Gordon GW, Poulton SW, Anbar AD (2011) Molybdenum isotope constraints on the extent of late Paleoproterozoic ocean euxinia. Earth Planet Sci Lett 307(3–4):450–460.  https://doi.org/10.1016/j.epsl.2011.05.019CrossRefGoogle Scholar
  264. Kendall B, Komiya T, Lyons TW, Bates SM, Gordon GW, Romaniello SJ, Jiang G, Creaser RA, Xiao S, McFadden K, Sawaki Y, Tahata M, Shu D, Han J, Li Y, Chu X, Anbar AD (2015b) Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period. Geochim Cosmochim Acta 156:173–193.  https://doi.org/10.1016/j.gca.2015.02.025CrossRefGoogle Scholar
  265. Kendall B, Reinhard CT, Lyons TW, Kaufman AJ, Poulton SW, Anbar AD (2010) Pervasive oxygenation along late Archaean ocean margins. Nat Geosci 3(9):647–652.  https://doi.org/10.1038/ngeo942CrossRefGoogle Scholar
  266. Kennedy M, Droser M, Mayer LM, Pevear D, Mrofka D (2006) Late Precambrian oxygenation; inception of the clay mineral factory. Science 311(5766):1446–1449CrossRefGoogle Scholar
  267. Kent DV, Muttoni G (2013) Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric  pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Clim Past 9(2):525–546.  https://doi.org/10.5194/cp-9-525-2013CrossRefGoogle Scholar
  268. King EK, Perakis SS, Pett-Ridge JC (2018) Molybdenum isotope fractionation during adsorption to organic matter. Geochim Cosmochim Acta 222:584–598.  https://doi.org/10.1016/j.gca.2017.11.014CrossRefGoogle Scholar
  269. Kirschivink JL (1992) Late Proterozoic low-latitude global glaciation: the snow-ball earth. The Proterozoic biosphere: a multi-disciplinary study. Cambridge University Press, New York, pp 51–52Google Scholar
  270. Kita I, Taguchi S, Matsubaya O (1985) Oxygen isotope fractionation between amorphous silica and water at 34–93 °C. Nature 314:83–84CrossRefGoogle Scholar
  271. Kita NT, Huberty JM, Kozdon R, Beard BL, Valley JW (2011) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. Surf Interface Anal 43(1–2):427–431.  https://doi.org/10.1002/sia.3424CrossRefGoogle Scholar
  272. Kitchen NE, Valley JW (1995) Carbon isotope thermometry in marbles of the Adirondack Mountains, New York. J Metamorph Geol 13:577–594CrossRefGoogle Scholar
  273. Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am Miner 90(10):1473–1499.  https://doi.org/10.2138/am.2005.1871CrossRefGoogle Scholar
  274. Klemm V, Levasseur S, Frank M, Hein J, Halliday A (2005) Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet Sci Lett 238(1–2):42–48.  https://doi.org/10.1016/j.epsl.2005.07.016CrossRefGoogle Scholar
  275. Klemm V, Reynolds B, Frank M, Pettke T, Halliday AN (2007) Cenozoic changes in atmospheric lead recorded in central Pacific ferromanganese crusts. Earth Planet Sci Lett 253(1–2):57–66.  https://doi.org/10.1016/j.epsl.2006.10.018CrossRefGoogle Scholar
  276. Koehler MC, Buick R, Kipp MA, Stueken EE, Zaloumis J (2018) Transient surface ocean oxygenation recorded in the approximately 2.66-Ga Jeerinah Formation, Australia. Proc Natl Acad Sci USA 115(30):7711–7716.  https://doi.org/10.1073/pnas.1720820115CrossRefGoogle Scholar
  277. Kohn MJ, Strömberg CAE, Madden RH, Dunn RE, Evans S, Palacios A, Carlini AA (2015) Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeogr Palaeoclimatol Palaeoecol 435:24–37.  https://doi.org/10.1016/j.palaeo.2015.05.028CrossRefGoogle Scholar
  278. Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30(12):1079–1082CrossRefGoogle Scholar
  279. Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177CrossRefGoogle Scholar
  280. Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ, Haugaard R, Lalonde SV, Partin CA, Oonk PBH, Tsikos H, Lyons TW, Bekker A, Johnson CM (2017) Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci Rev 172:140–177.  https://doi.org/10.1016/j.earscirev.2017.06.012CrossRefGoogle Scholar
  281. Korenaga J (2013) Initiation and evolution of plate tectonics on earth: theories and observations. Annu Rev Earth Planet Sci 41(1):117–151.  https://doi.org/10.1146/annurev-earth-050212-124208CrossRefGoogle Scholar
  282. Korenaga J (2018) Crustal evolution and mantle dynamics through Earth history. Philos Trans A Math Phys Eng Sci 376(2132).  https://doi.org/10.1098/rsta.2017.0408CrossRefGoogle Scholar
  283. Korenaga J, Planavsky NJ, Evans DAD (2017) Global water cycle and the coevolution of the Earth’s interior and surface environment. Philos Trans A Math Phys Eng Sci 375(2094).  https://doi.org/10.1098/rsta.2015.0393CrossRefGoogle Scholar
  284. Kraal P, Slomp CP, Forster A, Kuypers MMM (2010) Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2. Palaeogeogr Palaeoclimatol Palaeoecol 295(1–2):42–54.  https://doi.org/10.1016/j.palaeo.2010.05.014CrossRefGoogle Scholar
  285. Krissansen-Totton J, Buick R, Catling DC (2015) A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am J Sci 315(4):275–316.  https://doi.org/10.2475/04.2015.01CrossRefGoogle Scholar
  286. Kump LR (2012) Sulfur isotopes and the stepwise oxygenation of the biosphere. Elements 8(6):410–411.  https://doi.org/10.2113/gselements.8.6.410CrossRefGoogle Scholar
  287. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181–198CrossRefGoogle Scholar
  288. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448(7157):1033–1036.  https://doi.org/10.1038/nature06058CrossRefGoogle Scholar
  289. Kump LR, Holland HD (1992) Iron in Precambrian rocks: implications for the global oxygen budget of the ancient Earth. Geochim Cosmochim Acta 56:3217–3223CrossRefGoogle Scholar
  290. Kump LR, Junium C, Arthur MA, Brasier A, Fallick A, Melezhik V, Lepland A, Crne AE, Luo GM (2011) Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334(6063):1694–1696.  https://doi.org/10.1126/science.1213999CrossRefGoogle Scholar
  291. Kump LR, Seyfried WE (2005) Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett 235(3–4):654–662.  https://doi.org/10.1016/j.epsl.2005.04.040CrossRefGoogle Scholar
  292. Kunzmann M, Gibson TM, Halverson GP, Hodgskiss MSW, Bui TH, Carozza DA, Sperling EA, Poirier A, Cox GM, Wing BA (2017) Iron isotope biogeochemistry of Neoproterozoic marine shales. Geochim Cosmochim Acta 209:85–105.  https://doi.org/10.1016/j.gca.2017.04.003CrossRefGoogle Scholar
  293. Kunzmann M, Gutzmer J, Beukes NJ, Halverson GP (2014) Depositional environment and lithostratigraphy of the paleoproterozoic Mooidraai Formation, Kalahari Manganese Field, South Africa. S Afr J Geol 117(2):173–192.  https://doi.org/10.2113/gssajgCrossRefGoogle Scholar
  294. Kunzmann M, Halverson GP, Scott C, Minarik WG, Wing BA (2015) Geochemistry of Neoproterozoic black shales from Svalbard: implications for oceanic redox conditions spanning Cryogenian glaciations. Chem Geol 417:383–393.  https://doi.org/10.1016/j.chemgeo.2015.10.022CrossRefGoogle Scholar
  295. Kurtz AC, Kump LR, Arthur MA, Zachos JC, Paytan A (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18(4):n/a-n/a.  https://doi.org/10.1029/2003pa000908CrossRefGoogle Scholar
  296. Kurzweil F, Wille M, Gantert N, Beukes NJ, Schoenberg R (2016) Manganese oxide shuttling in pre-GOE oceans–evidence from molybdenum and iron isotopes. Earth Planet Sci Lett 452:69–78.  https://doi.org/10.1016/j.epsl.2016.07.013CrossRefGoogle Scholar
  297. Kurzweil F, Wille M, Schoenberg R, Taubald H, Van Kranendonk MJ (2015a) Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin. Geochim Cosmochim Acta 164:523–542.  https://doi.org/10.1016/j.gca.2015.05.009CrossRefGoogle Scholar
  298. Kurzweil F, Drost K, Pašava J, Wille M, Taubald H, Schoeckle D, Schoenberg R (2015b) Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá- Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim Cosmochim Acta 171:121–142. http://dx.doi.org/10.1016/j.gca.2015.08.022CrossRefGoogle Scholar
  299. Kuypers MMM, Lourens LJ, Rijpstra WIC, Pancost RD, Nijenhuis IA, Sinninghe Damsté JS (2004) Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2. Earth Planet Sci Lett 228(3–4):465–482.  https://doi.org/10.1016/j.epsl.2004.09.037CrossRefGoogle Scholar
  300. Kuypers MMM, Pancost RD, Nijenhuis IA, Sinninghe Damsté JS (2002) Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17(4):3-1–3-13.  https://doi.org/10.1029/2000pa000569CrossRefGoogle Scholar
  301. Laakso TA, Schrag DP (2014) Regulation of atmospheric oxygen during the Proterozoic. Earth Planet Sci Lett 388:81–91.  https://doi.org/10.1016/j.epsl.2013.11.049CrossRefGoogle Scholar
  302. Laakso TA, Schrag DP (2017) A theory of atmospheric oxygen. Geobiology 15(3):366–384.  https://doi.org/10.1111/gbi.12230CrossRefGoogle Scholar
  303. Labrosse S, Jaupart C (2007) Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics. Earth Planet Sci Lett 260(3–4):465–481.  https://doi.org/10.1016/j.epsl.2007.05.046CrossRefGoogle Scholar
  304. Ladant J-B, Donnadieu Y, Bopp L, Lear CH, Wilson PA (2018) Meridional contrasts in productivity changes driven by the opening of drake passage. Paleoceanogr Paleoclimatology 33(3):302–317.  https://doi.org/10.1002/2017pa003211CrossRefGoogle Scholar
  305. Lanci L, Muttoni G, Erba E (2010) Astronomical tuning of the cenomanian scaglia bianca formation at Furlo, Italy. Earth Planet Sci Lett 292(1–2):231–237.  https://doi.org/10.1016/j.epsl.2010.01.041CrossRefGoogle Scholar
  306. Land JS, Tsikos H, Cousins D, Luvizotto G, Zack T (2018) Origin of red beds and paleosols in the Palaeoproterozoic Transvaal and Olifansthoek Supergroups of South Africa: provenance versus metasomatic controls. Geol J 53(1):191–202.  https://doi.org/10.1002/gj.2885CrossRefGoogle Scholar
  307. Lantink ML, Oonk PBH, Floor GH, Tsikos H, Mason PRD (2018) Fe isotopes of a 2.4 Ga hematite-rich IF constrain marine redox conditions around the GOE. Precambrian Res 305:218–235.  https://doi.org/10.1016/j.precamres.2017.12.025CrossRefGoogle Scholar
  308. Lau KV, Macdonald FA, Maher K, Payne JL (2017) Uranium isotope evidence for temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. Earth Planet Sci Lett 458:282–292.  https://doi.org/10.1016/j.epsl.2016.10.043CrossRefGoogle Scholar
  309. Laurin J, Meyers SR, Galeotti S, Lanci L (2016) Frequency modulation reveals the phasing of orbital eccentricity during Cretaceous Oceanic Anoxic Event II and the Eocene hyperthermals. Earth Planet Sci Lett 442:143–156.  https://doi.org/10.1016/j.epsl.2016.02.047CrossRefGoogle Scholar
  310. Leavitt WD, Halevy I, Bradley AS, Johnston DT (2013) Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record. Proc Natl Acad Sci USA 110(28):11244–11249.  https://doi.org/10.1073/pnas.1218874110CrossRefGoogle Scholar
  311. Lechler M, Pogge von Strandmann PAE, Jenkyns HC, Prosser G, Parente M (2015) Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet Sci Lett 432:210–222.  https://doi.org/10.1016/j.epsl.2015.09.052CrossRefGoogle Scholar
  312. Lechte M, Wallace M (2016) Sub–ice shelf ironstone deposition during the Neoproterozoic Sturtian glaciation. Geology 44(11):891–894.  https://doi.org/10.1130/g38495.1CrossRefGoogle Scholar
  313. Lechte MA, Wallace MW (2015) Sedimentary and tectonic history of the Holowilena Ironstone, a Neoproterozoic iron formation in South Australia. Sed Geol 329:211–224.  https://doi.org/10.1016/j.sedgeo.2015.09.014CrossRefGoogle Scholar
  314. Lechte MA, Wallace MW, AvS Hood, Planavsky N (2018) Cryogenian iron formations in the glaciogenic Kingston Peak Formation, California. Precambrian Res 310:443–462.  https://doi.org/10.1016/j.precamres.2018.04.003CrossRefGoogle Scholar
  315. Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3):13-11–13-29.  https://doi.org/10.1029/2001pa000623CrossRefGoogle Scholar
  316. Lee C-D, Halliday AN, Hein JR, Burton KW, Christensen JN, Gunther D (1999) Hafnium isotope stratigraphy of ferromanganese crusts. Science 285:1052–1054CrossRefGoogle Scholar
  317. Lee C-TA, Yeung LY, McKenzie NR, Yokoyama Y, Ozaki K, Lenardic A (2016) Two-step rise of atmospheric oxygen linked to the growth of continents. Nat Geosci 9(6):417–424.  https://doi.org/10.1038/ngeo2707CrossRefGoogle Scholar
  318. Lepland A, van Zuilen MA, Arrhenius G, Whitehouse MJ, Fedo CM (2005) Questioning the evidence for Earth’s earliest life—Akilia revisited. Geology 33(1).  https://doi.org/10.1130/g20890.1CrossRefGoogle Scholar
  319. Lepot K, Addad A, Knoll AH, Wang J, Troadec D, Beche A, Javaux EJ (2017) Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nat Commun 8:14890.  https://doi.org/10.1038/ncomms14890
  320. Levasseur S, Frank M, Hein JR, Halliday AN (2004) The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: implications for seawater chemistry? Earth Planet Sci Lett 224(1–2):91–105.  https://doi.org/10.1016/j.epsl.2004.05.010CrossRefGoogle Scholar
  321. Li C, Love GD, Lyons TW, Fike DA, Sessions AL, Chu X (2010) A stratified redox model for the Ediacaran Ocean. Science 328:80–83CrossRefGoogle Scholar
  322. Li C, Love GD, Lyons TW, Scott CT, Feng L, Huang J, Chang H, Zhang Q, Chu X (2012a) Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth Planet Sci Lett 331–332:246–256.  https://doi.org/10.1016/j.epsl.2012.03.018CrossRefGoogle Scholar
  323. Li G, Elderfield H (2013) Evolution of carbon cycle over the past 100 million years. Geochim Cosmochim Acta 103:11–25.  https://doi.org/10.1016/j.gca.2012.10.014CrossRefGoogle Scholar
  324. Li G, Hartmann J, Derry LA, West AJ, You C-F, Long X, Zhan T, Li L, Li G, Qiu W, Li T, Liu L, Chen Y, Ji J, Zhao L, Chen J (2016) Temperature dependence of basalt weathering. Earth Planet Sci Lett 443:59–69.  https://doi.org/10.1016/j.epsl.2016.03.015CrossRefGoogle Scholar
  325. Li W, Beard BL, Johnson CM (2015) Biologically recycled continental iron is a major component in banded iron formations. Proc Natl Acad Sci USA 112(27):8193–8198.  https://doi.org/10.1073/pnas.1505515112CrossRefGoogle Scholar
  326. Li W, Czaja AD, Van Kranendonk MJ, Beard BL, Roden EE, Johnson CM (2013a) An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago. Geochim Cosmochim Acta 120:65–79.  https://doi.org/10.1016/j.gca.2013.06.033CrossRefGoogle Scholar
  327. Li W, Huberty JM, Beard BL, Kita NT, Valley JW, Johnson CM (2013b) Contrasting behavior of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth Planet Sci Lett 384:132–143.  https://doi.org/10.1016/j.epsl.2013.10.014CrossRefGoogle Scholar
  328. Li W, Johnson CM, Beard BL (2012b) U-Th–Pb isotope data indicate phanerozoic age for oxidation of the 3.4 Ga Apex Basalt. Earth Planet Sci Lett 319–320:197–206CrossRefGoogle Scholar
  329. Li Y-L, Konhauser KO, Zhai M (2017a) The formation of magnetite in the early Archean oceans. Earth Planet Sci Lett 466:103–114.  https://doi.org/10.1016/j.epsl.2017.03.013CrossRefGoogle Scholar
  330. Li Y-X, Montañez IP, Liu Z, Ma L (2017b) Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2). Earth Planet Sci Lett 462:35–46.  https://doi.org/10.1016/j.epsl.2017.01.007CrossRefGoogle Scholar
  331. Li ZX, Bogdanova SV, Collins AS, Davidson A, De Waele B, Ernst RE, Fitzsimons ICW, Fuck RA, Gladkochub DP, Jacobs J, Karlstrom KE, Lu S, Natapov LM, Pease V, Pisarevsky SA, Thrane K, Vernikovsky V (2008) Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res 160(1–2):179–210.  https://doi.org/10.1016/j.precamres.2007.04.021CrossRefGoogle Scholar
  332. Lin Z, Sun X, Lu Y, Strauss H, Xu L, Gong J, Teichert BMA, Lu R, Lu H, Sun W, Peckmann J (2017) The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: insights from the South China Sea. Chem Geol 449:15–29.  https://doi.org/10.1016/j.chemgeo.2016.11.032CrossRefGoogle Scholar
  333. Ling H-F, Burton KW, O’Nions RK, Kamber BS, von Blanckenburg F, Gibb AJ, Hein JR (1997) Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet Sci Lett 146:1–12CrossRefGoogle Scholar
  334. Liu XM, Kah LC, Knoll AH, Cui H, Kaufman AJ, Shahar A, Hazen RM (2016) Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem Perspect Lett 2(1):24–34.  https://doi.org/10.7185/geochemlet.1603CrossRefGoogle Scholar
  335. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) Reduction. Microbiol Rev 55(2):259–287Google Scholar
  336. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54(6):1472–1480CrossRefGoogle Scholar
  337. Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the Baberton Greenstone Belt, South Africa. Special Papers-Geological Society of America:1–39Google Scholar
  338. Lowe DR, Byerly GR (2007) Chapter 5.3 An overview of the geology of the Barberton Greenstone Belt and vicinity: implications for early crustal development. In: Earth’s oldest rocks. Developments in Precambrian geology, pp 481–526.  https://doi.org/10.1016/s0166-2635(07)15053-2CrossRefGoogle Scholar
  339. Lowell RP, Keller SM (2003) High-temperature seafloor hydrothermal circulation over geologic time and archean banded iron formations. Geophys Res Lett 30(7).  https://doi.org/10.1029/2002gl016536
  340. Luo G, Ono S, Huang J, Algeo TJ, Li C, Zhou L, Robinson A, Lyons TW, Xie S (2015) Decline in oceanic sulfate levels during the early Mesoproterozoic. Precambrian Res 258:36–47.  https://doi.org/10.1016/j.precamres.2014.12.014CrossRefGoogle Scholar
  341. Lyle M, Barron J, Bralower TJ, Huber M, Olivarez Lyle A, Ravelo AC, Rea DK, Wilson PA (2008) Pacific Ocean and Cenozoic evolution of climate. Rev Geophys 46(2).  https://doi.org/10.1029/2005rg000190
  342. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315.  https://doi.org/10.1038/nature13068CrossRefGoogle Scholar
  343. Lyons TW, Severmann S (2006) A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim Cosmochim Acta 70(23):5698–5722.  https://doi.org/10.1016/j.gca.2006.08.021CrossRefGoogle Scholar
  344. Macdonald FA, Halverson GP, Strauss JV, Smith EF, Cox G, Sperling EA, Roots CF (2012) Early neoproterozoic basin formation in Yukon, Canada: implications for the make-up and break-up of Rodinia. Geosci Can 39:77–99Google Scholar
  345. Macdonald FA, Schmitz MD, Crowley JL, Roots CF, Jones DS, Maloof AC, Strauss JV, Cohen PA, Johnston DT, Schrag DP (2010) Calibrating the cryogenian. Science 327(5970):1241–1243.  https://doi.org/10.1126/science.1183325CrossRefGoogle Scholar
  346. Macdonald FA, Schmitz MD, Strauss JV, Halverson GP, Gibson TM, Eyster A, Cox G, Mamrol P, Crowley JL (2018) Cryogenian of Yukon. Precambrian Res 319:114–143.  https://doi.org/10.1016/j.precamres.2017.08.015CrossRefGoogle Scholar
  347. Macdonald FA, Wordsworth R (2017) Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys Res Lett 44:1–9.  https://doi.org/10.1002/2016GL072335CrossRefGoogle Scholar
  348. MacFarlane AW, Holland HD (1991) The timing of alkali metasomatism in paleosols. Can Miner 29:1043–1050Google Scholar
  349. Mandernack KW, Bazylinski DA, Shanks WC III, Bullen TD (1999) Oxygen and Iron Isotope Studies of Magnetite Produced by Magnetotactic Bacteria. Science 285(5435):1892–1896.  https://doi.org/10.1126/science.285.5435.1892CrossRefGoogle Scholar
  350. Mansor M, Fantle MS (2019) A novel framework for interpreting pyrite-based Fe isotope records of the past. Geochim Cosmochim Acta 253:39–62.  https://doi.org/10.1016/j.gca.2019.03.017CrossRefGoogle Scholar
  351. Marcus MA, Edwards KJ, Gueguen B, Fakra SC, Horn G, Jelinski NA, Rouxel O, Sorensen J, Toner BM (2015) Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma. Geochim Cosmochim Acta 171:61–79.  https://doi.org/10.1016/j.gca.2015.08.021CrossRefGoogle Scholar
  352. Martin AP, Condon DJ, Prave AR, Lepland A (2013) A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth Sci Rev 127:242–261.  https://doi.org/10.1016/j.earscirev.2013.10.006CrossRefGoogle Scholar
  353. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: lowess version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table deriving numerical age. J Geol 109(155–170)CrossRefGoogle Scholar
  354. McDowell FW, Housh TB, Wark DA (1999) Nature of the crust beneath west-central Chihuahua, Mexico, based upon Sr, Nd, and Pb isotopic compositions at the Tomóchic volcanic center. GSA Bull 111(6):823–830CrossRefGoogle Scholar
  355. McKenzie NR, Hughes NC, Gill BC, Myrow PM (2014) Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology 42(2):127–130.  https://doi.org/10.1130/g34962.1CrossRefGoogle Scholar
  356. Melezhik VA, Fallick AE, Brasier AT, Lepland A (2015) Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi-Jatuli to Shunga events. Earth Sci Rev 147:65–98.  https://doi.org/10.1016/j.earscirev.2015.05.005CrossRefGoogle Scholar
  357. Mendes M, Lobato LM, Kunzmann M, Halverson GP, Rosière CA (2017) Iron isotope and REE+Y composition of the Cauê banded iron formation and related iron ores of the Quadrilátero Ferrífero, Brazil. Miner Depos 52(2):159–180.  https://doi.org/10.1007/s00126-016-0649-9CrossRefGoogle Scholar
  358. Meyers SR, Siewert SE, Singer BS, Sageman BB, Condon DJ, Obradovich JD, Jicha BR, Sawyer DA (2012) Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology 40(1):7–10.  https://doi.org/10.1130/g32261.1CrossRefGoogle Scholar
  359. Meynadier L, Allègre C, O’Nions RK (2008) Plate tectonics, radiogenic isotopic tracers and paleoceanography. Earth Planet Sci Lett 272(3–4):513–522.  https://doi.org/10.1016/j.epsl.2008.04.029CrossRefGoogle Scholar
  360. Mills JV, Gomes ML, Kristall B, Sageman BB, Jacobson AD, Hurtgen MT (2017) Massive volcanism, evaporite deposition, and the chemical evolution of the Early Cretaceous ocean. Geology 45(5):475–478.  https://doi.org/10.1130/g38667.1CrossRefGoogle Scholar
  361. Misra S, Froelich PN (2012) Lithium isotope history of cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335(6070):818–823.  https://doi.org/10.1126/science.1214697CrossRefGoogle Scholar
  362. Miyazaki Y, Planavsky NJ, Bolton EW, Reinhard CT (2018) Making sense of massive carbon isotope excursions with an inverse carbon cycle model. J Geophys Res Biogeosci 123(8):2485–2496.  https://doi.org/10.1029/2018jg004416CrossRefGoogle Scholar
  363. Mloszewska AM, Mojzsis SJ, Pecoits E, Papineau D, Dauphas N, Konhauser KO (2013) Chemical sedimentary protoliths in the >3.75 Ga Nuvvuagittuq Supracrustal Belt (Québec, Canada). Gondwana Res 23(2):574–594.  https://doi.org/10.1016/j.gr.2012.11.005CrossRefGoogle Scholar
  364. Mloszewska AM, Pecoits E, Cates NL, Mojzsis SJ, O’Neil J, Robbins LJ, Konhauser KO (2012) The composition of Earth’s oldest iron formations: the Nuvvuagittuq Supracrustal Belt (Québec, Canada). Earth Planet Sci Lett 317–318:331–342.  https://doi.org/10.1016/j.epsl.2011.11.020CrossRefGoogle Scholar
  365. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3800 million years ago. Nature 384:55–59CrossRefGoogle Scholar
  366. Montañez IP, Banner JL, Osleger DA, Borg LE, Bosserman PJ (1996) Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology 24(10):917–920CrossRefGoogle Scholar
  367. Monteiro FM, Pancost RD, Ridgwell A, Donnadieu Y (2012) Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison. Paleoceanography 27(4).  https://doi.org/10.1029/2012pa002351
  368. Moore TC Jr, Wade BS, Westerhold T, Erhardt AM, Coxall HK, Baldauf J, Wagner M (2014) Equatorial Pacific productivity changes near the Eocene-Oligocene boundary. Paleoceanography 29:825–844.  https://doi.org/10.1002/2014PA002656CrossRefGoogle Scholar
  369. Morgan JJ (2005) Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochim Cosmochim Acta 69(1):35–48.  https://doi.org/10.1016/j.gca.2004.06.013CrossRefGoogle Scholar
  370. Mort H, Jacquat O, Adatte T, Steinmann P, Föllmi K, Matera V, Berner Z, Stüben D (2007a) The Cenomanian/Turonian anoxic event at the Bonarelli Level in Italy and Spain: enhanced productivity and/or better preservation? Cretac Res 28(4):597–612.  https://doi.org/10.1016/j.cretres.2006.09.003CrossRefGoogle Scholar
  371. Mort HP, Adatte T, Föllmi KB, Keller G, Steinmann P, Matera V, Berner Z, Stüben D (2007b) Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35(6).  https://doi.org/10.1130/g23475a.1CrossRefGoogle Scholar
  372. Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C (2008) Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319:1357–1362.  https://doi.org/10.1126/science.1151540CrossRefGoogle Scholar
  373. Murakami T, Ito J-I, Utsunomiya S, Kasama T, Kozai N, Ohnuki T (2004) Anoxic dissolution processes of biotite: implications for Fe behavior during Archean weathering. Earth Planet Sci Lett 224(1–2):117–129.  https://doi.org/10.1016/j.epsl.2004.04.040CrossRefGoogle Scholar
  374. Murakami T, Matsuura K, Kanzaki Y (2016) Behaviors of trace elements in Neoarchean and Paleoproterozoic paleosols: implications for atmospheric oxygen evolution and continental oxidative weathering. Geochim Cosmochim Acta 192:203–219.  https://doi.org/10.1016/j.gca.2016.07.008CrossRefGoogle Scholar
  375. Myers CR, Nealson KH (1988) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim Cosmochim Acta 52:2727–2732CrossRefGoogle Scholar
  376. Naeraa T, Schersten A, Rosing MT, Kemp AI, Hoffmann JE, Kokfelt TF, Whitehouse MJ (2012) Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485(7400):627–630.  https://doi.org/10.1038/nature11140CrossRefGoogle Scholar
  377. Nakagawa Y, Takano S, Firdaus ML, Norisuye K, Hirata T, Vance D, Sohrin Y (2012) The molybdenum isotopic composition of the modern ocean. Geochem J 44:131–141CrossRefGoogle Scholar
  378. Nealson KH, Tebo BM, Rosson RA (1988) Occurence and mechanisms of microbial oxidation of manganese. In: Advances in applied microbiology, vol 33. Academic Press, Inc., pp 279–318Google Scholar
  379. Nel BP (2013) Petrography and geochemistry of iron formations of the Paleoproterozoic Koegas Subgroup, Transvaal Supergroup, Griqualand West. University of Johannesburg, South AfricaGoogle Scholar
  380. Nhleko N (2003) The pongola supergroup in Swaziland. Rand Afrikaans UniversityGoogle Scholar
  381. Nicklas RW, Puchtel IS, Ash RD (2018) Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga komatiites. Geochim Cosmochim Acta 222:447–466.  https://doi.org/10.1016/j.gca.2017.11.002CrossRefGoogle Scholar
  382. Nielsen SG, Mar-Gerrison S, Gannoun A, LaRowe D, Klemm V, Halliday AN, Burton KW, Hein JR (2009) Thallium isotope evidence for a permanent increase in marine organic carbon export in the early Eocene. Earth Planet Sci Lett 278(3–4):297–307.  https://doi.org/10.1016/j.epsl.2008.12.010CrossRefGoogle Scholar
  383. Nishizawa M, Yamamoto H, Ueno Y, Tsuruoka S, Shibuya T, Sawaki Y, Yamamoto S, Kon Y, Kitajima K, Komiya T, Maruyama S, Hirata T (2010) Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: possible proxy for the redox state of ancient seawater. Geochim Cosmochim Acta 74(9):2760–2778.  https://doi.org/10.1016/j.gca.2010.02.014CrossRefGoogle Scholar
  384. Nutman AP, Bennett VC (2019) The 3.9–3.6 Ga itsaq gneiss complex of Greenland. In: Earth’s oldest rocks, pp 375–399.  https://doi.org/10.1016/b978-0-444-63901-1.00017-4CrossRefGoogle Scholar
  385. Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621):535–538.  https://doi.org/10.1038/nature19355CrossRefGoogle Scholar
  386. Nutman AP, Bennett VC, Friend CRL (2017) Seeing through the magnetite: reassessing Eoarchean atmosphere composition from Isua (Greenland) ≥ 3.7 Ga banded iron formations. Geosci Front 8(6):1233–1240.  https://doi.org/10.1016/j.gsf.2017.02.008CrossRefGoogle Scholar
  387. Nutman AP, Bennett VC, Friend CRL (2019) Eoarchean life from the isua supracrustal belt (Greenland). In: Earth’s oldest rocks, pp 965–983.  https://doi.org/10.1016/b978-0-444-63901-1.00039-3CrossRefGoogle Scholar
  388. Nutman AP, Friend CRL, Bennett VC, Wright D, Norman MD (2010) ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183(4):725–737.  https://doi.org/10.1016/j.precamres.2010.08.006CrossRefGoogle Scholar
  389. O’Brien CL, Robinson SA, Pancost RD, Sinninghe Damsté JS, Schouten S, Lunt DJ, Alsenz H, Bornemann A, Bottini C, Brassell SC, Farnsworth A, Forster A, Huber BT, Inglis GN, Jenkyns HC, Linnert C, Littler K, Markwick P, McAnena A, Mutterlose J, Naafs BDA, Püttmann W, Sluijs A, van Helmond NAGM, Vellekoop J, Wagner T, Wrobel NE (2017) Cretaceous sea-surface temperature evolution: constraints from TEX 86 and planktonic foraminiferal oxygen isotopes. Earth Sci Rev 172:224–247.  https://doi.org/10.1016/j.earscirev.2017.07.012CrossRefGoogle Scholar
  390. O’Neil J, Carlson RW, Papineau D, Levine EY, Francis D (2019) The Nuvvuagittuq Greenstone Belt. In: Earth’s oldest rocks, pp 349–374.  https://doi.org/10.1016/b978-0-444-63901-1.00016-2CrossRefGoogle Scholar
  391. O’Neil J, Maurice C, Stevenson RK, Larocque J, Cloquet C, David J, Francis D (2007) Chapter 3.4 The geology of the 3.8 Ga Nuvvuagittuq (Porpoise Cove) Greenstone Belt, Northeastern Superior Province, Canada. In: Earth’s oldest rocks. Developments in Precambrian geology, pp 219–250.  https://doi.org/10.1016/s0166-2635(07)15034-9CrossRefGoogle Scholar
  392. O’Neill C, Debaille V (2014) The evolution of Hadean-Eoarchaean geodynamics. Earth Planet Sci Lett 406:49–58CrossRefGoogle Scholar
  393. O’Nions RK, Frank M, von Blanckenburg F, Ling H-F (1998) Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth Planet Sci Lett 155:15–28CrossRefGoogle Scholar
  394. Och LM, Shields-Zhou GA (2012) The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci Rev 110(1–4):26–57.  https://doi.org/10.1016/j.earscirev.2011.09.004CrossRefGoogle Scholar
  395. Ohmoto H (1996) Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota Geology 24(12):1135–1138Google Scholar
  396. Ohmoto H, Watanabe Y, Yamaguchi KE, Naraoka H, Haruna M, Kakegawa T, Hayashi K-i, Kato Y (2006) Chemical and biological evolution of early Earth: constraints from banded iron formations. In: Memoir 198: evolution of early earth’s atmosphere, hydrosphere, and biosphere-constraints from ore deposits, pp 291–331.  https://doi.org/10.1130/2006.1198(17)
  397. Olson SL, Kump LR, Kasting JF (2013) Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem Geol 362:35–43.  https://doi.org/10.1016/j.chemgeo.2013.08.012CrossRefGoogle Scholar
  398. Ono S, Kaufman AJ, Farquhar J, Sumner DY, Beukes NJ (2009) Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res 169(1–4):58–67.  https://doi.org/10.1016/j.precamres.2008.10.013CrossRefGoogle Scholar
  399. Ossa Ossa F, Eickmann B, Hofmann A, Planavsky NJ, Asael D, Pambo F, Bekker A (2018a) Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth Planet Sci Lett 486:70–83.  https://doi.org/10.1016/j.epsl.2018.01.009CrossRefGoogle Scholar
  400. Ossa Ossa F, Hofmann A, Vidal O, Kramers JD, Belyanin G, Cavalazzi B (2016) Unusual manganese enrichment in the Mesoarchean Mozaan Group, Pongola Supergroup, South Africa. Precambrian Res 281:414–433.  https://doi.org/10.1016/j.precamres.2016.06.009CrossRefGoogle Scholar
  401. Ossa Ossa F, Hofmann A, Wille M, Spangenberg JE, Bekker A, Poulton SW, Eickmann B, Schoenberg R (2018b) Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth Planet Sci Lett 500:28–40.  https://doi.org/10.1016/j.epsl.2018.07.044CrossRefGoogle Scholar
  402. Ostrander CM, Nielsen SG, Owens JD, Kendall B, Gordon GW, Romaniello SJ, Anbar AD (2019) Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat Geosci 12(3):186–191.  https://doi.org/10.1038/s41561-019-0309-7CrossRefGoogle Scholar
  403. Ostrander CM, Owens JD, Nielsen SG (2017) Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~ 94 Ma). Sci Adv 3:1–5CrossRefGoogle Scholar
  404. Owens JD, Gill BC, Jenkyns HC, Bates SM, Severmann S, Kuypers MM, Woodfine RG, Lyons TW (2013) Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proc Natl Acad Sci USA 110(46):18407–18412.  https://doi.org/10.1073/pnas.1305304110CrossRefGoogle Scholar
  405. Owens JD, Lyons TW, Hardisty DS, Lowery CM, Lu Z, Lee B, Jenkyns HC, Heimhofer U (2017a) Patterns of local and global redox variability during the Cenomanian-Turonian Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from central Italy. Sedimentology 64(1):168–185.  https://doi.org/10.1111/sed.12352CrossRefGoogle Scholar
  406. Owens JD, Lyons TW, Li X, Macleod KG, Gordon G, Kuypers MMM, Anbar A, Kuhnt W, Severmann S (2012) Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2). Paleoceanography 27(3):n/a-n/a.  https://doi.org/10.1029/2012pa002328CrossRefGoogle Scholar
  407. Owens JD, Lyons TW, Lowery CM (2018) Quantifying the missing sink for global organic carbon burial during a Cretaceous oceanic anoxic event. Earth Planet Sci Lett 499:83–94.  https://doi.org/10.1016/j.epsl.2018.07.021CrossRefGoogle Scholar
  408. Owens JD, Nielsen SG, Horner TJ, Ostrander CM, Peterson LC (2017b) Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim Cosmochim Acta 213:291–307.  https://doi.org/10.1016/j.gca.2017.06.041CrossRefGoogle Scholar
  409. Owens JD, Reinhard CT, Rohrssen M, Love GD, Lyons TW (2016) Empirical links between trace metal cycling and marine microbial ecology during a large perturbation to Earth’s carbon cycle. Earth Planet Sci Lett 449:407–417.  https://doi.org/10.1016/j.epsl.2016.05.046CrossRefGoogle Scholar
  410. Ozaki K, Reinhard CT, Tajika E (2019) A sluggish mid-Proterozoic biosphere and its effect on Earth’s redox balance. Geobiology 17(1):3–11.  https://doi.org/10.1111/gbi.12317CrossRefGoogle Scholar
  411. Ozaki K, Tajika E, Hong PK, Nakagawa Y, Reinhard CT (2017) Effects of primitive photosynthesis on Earth’s early climate system. Nat Geosci 11(1):55–59.  https://doi.org/10.1038/s41561-017-0031-2CrossRefGoogle Scholar
  412. Pagani M, Huber M, Zhonghui L, Bohaty SM, Henderiks J, Sijp W, Krishnan S, DeConto RM (2011) The role of carbon dioxide during the onset of Antarctic glaciation. Science 334(6060):1261–1264CrossRefGoogle Scholar
  413. Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603CrossRefGoogle Scholar
  414. Paiste K, Lepland A, Zerkle AL, Kirsimäe K, Izon G, Patel NK, McLean F, Kreitsmann T, Mänd K, Bui TH, Romashkin AE, Rychanchik DV, Prave AR (2018) Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega formation, NW Russia. Chem Geol 499:151–164.  https://doi.org/10.1016/j.chemgeo.2018.09.025CrossRefGoogle Scholar
  415. Papineau D, De Gregorio BT, Cody GD, O’Neil J, Steele A, Stroud RM, Fogel ML (2011) Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formation. Nat Geosci 4(6):376–379.  https://doi.org/10.1038/ngeo1155CrossRefGoogle Scholar
  416. Partin CA, Bekker A, Planavsky NJ, Scott CT, Gill BC, Li C, Podkovyrov V, Maslov A, Konhauser KO, Lalonde SV, Love GD, Poulton SW, Lyons TW (2013a) Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet Sci Lett 369–370:284–293.  https://doi.org/10.1016/j.epsl.2013.03.031CrossRefGoogle Scholar
  417. Partin CA, Lalonde SV, Planavsky NJ, Bekker A, Rouxel OJ, Lyons TW, Konhauser KO (2013b) Uranium in iron formations and the rise of atmospheric oxygen. Chem Geol 362:82–90.  https://doi.org/10.1016/j.chemgeo.2013.09.005CrossRefGoogle Scholar
  418. Pavlov AA, Kasting JF (2002) Mass-Independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1):27–41CrossRefGoogle Scholar
  419. Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–1462.  https://doi.org/10.1126/science.282.5393.1459CrossRefGoogle Scholar
  420. Paytan A, Kastner M, Camphell D, Thiemens MH (2004) Seawater sulfur isotope fluctuations in the cretaceous. Science 304:1663–1665CrossRefGoogle Scholar
  421. Pearson PN (2012) Oxygen isotopes in foramenifera: overview and historical review. Paleontol Soc Pap 18:1–38CrossRefGoogle Scholar
  422. Percak-Dennett EM, Beard BL, Xu H, Konishi H, Johnson CM, Roden EE (2011) Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology 9(3):205–220.  https://doi.org/10.1111/j.1472-4669.2011.00277.xCrossRefGoogle Scholar
  423. Percak-Dennett EM, Loizeau J-L, Beard BL, Johnson CM, Roden EE (2013) Iron isotope geochemistry of biogenic magnetite-bearing sediments from the Bay of Vidy, Lake Geneva. Chem Geol 360–361:32–40.  https://doi.org/10.1016/j.chemgeo.2013.10.008CrossRefGoogle Scholar
  424. Peters SE (2006) Macrostratigraphy of North America. J Geol 114(4):391–412CrossRefGoogle Scholar
  425. Petrychenko OY, Peryt TM, Chechel EI (2005) Early Cambrian seawater chemistry from fluid inclusions in halite from Siberian evaporites. Chem Geol 219(1–4):149–161.  https://doi.org/10.1016/j.chemgeo.2005.02.003CrossRefGoogle Scholar
  426. Philippot P, Avila JN, Killingsworth BA, Tessalina S, Baton F, Caquineau T, Muller E, Pecoits E, Cartigny P, Lalonde SV, Ireland TR, Thomazo C, van Kranendonk MJ, Busigny V (2018) Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat Commun 9(1):2245.  https://doi.org/10.1038/s41467-018-04621-xCrossRefGoogle Scholar
  427. Planavsky N, Rouxel O, Bekker A, Shapiro R, Fralick P, Knudsen A (2009) Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett 286(1–2):230–242.  https://doi.org/10.1016/j.epsl.2009.06.033CrossRefGoogle Scholar
  428. Planavsky N, Rouxel OJ, Bekker A, Hofmann A, Little CTS, Lyons TW (2012a) Iron isotope composition of some Archean and Proterozoic iron formations. Geochim Cosmochim Acta 80:158–169.  https://doi.org/10.1016/j.gca.2011.12.001CrossRefGoogle Scholar
  429. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV, Knudsen A, Wang X, Ossa Ossa F, Pecoits E, Smith AJB, Beukes NJ, Bekker A, Johnson TM, Konhauser KO, Lyons TW, Rouxel OJ (2014) Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat Geosci 7(4):283–286.  https://doi.org/10.1038/ngeo2122CrossRefGoogle Scholar
  430. Planavsky NJ, Bekker A, Hofmann A, Owens JD, Lyons TW (2012b) Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc Natl Acad Sci USA 109(45):18300–18305.  https://doi.org/10.1073/pnas.1120387109CrossRefGoogle Scholar
  431. Planavsky NJ, Cole DB, Isson TT, Reinhard CT, Crockford PW, Sheldon ND, Lyons TW (2018a) A case for low atmospheric oxygen levels during Earth’s middle history. Emerg Top Life Sci 2(2):149–159.  https://doi.org/10.1042/etls20170161CrossRefGoogle Scholar
  432. Planavsky NJ, McGoldrick P, Scott CT, Li C, Reinhard CT, Kelly AE, Chu X, Bekker A, Love GD, Lyons TW (2011) Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477(7365):448–451.  https://doi.org/10.1038/nature10327CrossRefGoogle Scholar
  433. Planavsky NJ, Rouxel OJ, Bekker A, Lalonde SV, Konhauser KO, Reinhard CT, Lyons TW (2010) The evolution of the marine phosphate reservoir. Nature 467(7319):1088–1090.  https://doi.org/10.1038/nature09485CrossRefGoogle Scholar
  434. Planavsky NJ, Slack JF, Cannon WF, O’Connell B, Isson TT, Asael D, Jackson JC, Hardisty DS, Lyons TW, Bekker A (2018b) Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean. Chem Geol 483:581–594.  https://doi.org/10.1016/j.chemgeo.2018.03.028CrossRefGoogle Scholar
  435. Pogge von Strandmann PAE, Jenkyns HC, Woodfine RG (2013) Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nat Geosci 6(8):668–672.  https://doi.org/10.1038/ngeo1875CrossRefGoogle Scholar
  436. Polyakov VB, Mineev SD (2000) The use of Mossbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64(5):849–865CrossRefGoogle Scholar
  437. Polyakov VB, Soultanov DM (2011) New data on equilibrium iron isotope fractionation among sulfides: constraints on mechanisms of sulfide formation in hydrothermal and igneous systems. Geochim Cosmochim Acta 75(7):1957–1974.  https://doi.org/10.1016/j.gca.2011.01.019CrossRefGoogle Scholar
  438. Posth NR, Köhler I, D. Swanner E, Schröder C, Wellmann E, Binder B, Konhauser KO, Neumann U, Berthold C, Nowak M, Kappler A (2013) Simulating Precambrian banded iron formation diagenesis. Chem Geol 362:66–73.  https://doi.org/10.1016/j.chemgeo.2013.05.031CrossRefGoogle Scholar
  439. Poulsen CJ, Tabor C, White JD (2015) Long-term climate forcing by atmospheric oxygen concentrations. Science 348(6240):1238–1241CrossRefGoogle Scholar
  440. Poulton SW (2017) Early phosphorus redigested. Nat Geosci 10(2):75–76.  https://doi.org/10.1038/ngeo2884CrossRefGoogle Scholar
  441. Poulton SW, Canfield DE (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem Geol 214(3–4):209–221.  https://doi.org/10.1016/j.chemgeo.2004.09.003CrossRefGoogle Scholar
  442. Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through earth’s history. Elements 7(2):107–112.  https://doi.org/10.2113/gselements.7.2.107CrossRefGoogle Scholar
  443. Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean approximately 1.84 billion years ago. Nature 431(7005):173–177.  https://doi.org/10.1038/nature02912CrossRefGoogle Scholar
  444. Poulton SW, Fralick PW, Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci 3(7):486–490.  https://doi.org/10.1038/ngeo889CrossRefGoogle Scholar
  445. Poulton SW, Raiswell R (2002) The low-temperature geochemical cycle of iron: from continental fluxes to marine sediment deposition. Am J Sci 302:774–805CrossRefGoogle Scholar
  446. Prave AR, Condon DJ, Hoffmann KH, Tapster S, Fallick AE (2016) Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology 44(8):631–634.  https://doi.org/10.1130/g38089.1CrossRefGoogle Scholar
  447. Pu JP, Bowring SA, Ramezani J, Myrow P, Raub TD, Landing E, Mills A, Hodgin E, Macdonald FA (2016) Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44(11):955–958.  https://doi.org/10.1130/g38284.1CrossRefGoogle Scholar
  448. Pufahl PK, Hiatt EE, Kyser TK (2010) Does the Paleoproterozoic Animikie Basin record the sulfidic ocean transition? Geology 38(7):659–662.  https://doi.org/10.1130/g30747.1CrossRefGoogle Scholar
  449. Quinn KA, Byrne RH, Schijf J (2006) Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of pH and ionic strength. Mar Chem 99(1–4):128–150.  https://doi.org/10.1016/j.marchem.2005.05.011CrossRefGoogle Scholar
  450. Raiswell R, Canfield DE (1998) Sources of iron for pyrite formation in marine sediments. Am J Sci 298:219–245CrossRefGoogle Scholar
  451. Raiswell R, Hardisty DS, Lyons TW, Canfield DE, Owens JD, Planavsky NJ, Poulton SW, Reinhard CT (2018) The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am J Sci 318(5):491–526.  https://doi.org/10.2475/05.2018.03CrossRefGoogle Scholar
  452. Raiswell R, Newton R, Bottrell SH, Coburn PM, Briggs DEG, Bond DPG, Poulton SW (2008) Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsruck Slate; sites of soft tissue pyritization. Am J Sci 308(2):105–129.  https://doi.org/10.2475/02.2008.01CrossRefGoogle Scholar
  453. Raiswell R, Reinhard CT, Derkowski A, Owens J, Bottrell SH, Anbar AD, Lyons TW (2011) Formation of syngenetic and early diagenetic iron minerals in the late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation. Geochim Cosmochim Acta 75(4):1072–1087.  https://doi.org/10.1016/j.gca.2010.11.013CrossRefGoogle Scholar
  454. Raitzsch M, Hönisch B (2013) Cenozoic boron isotope variations in benthic foraminifers. Geology 41(5):591–594.  https://doi.org/10.1130/g34031.1CrossRefGoogle Scholar
  455. Rasmussen B, Krapez B, Meier DB (2014) Replacement origin for hematite in 2.5 Ga banded iron formation: evidence for postdepositional oxidation of iron-bearing minerals. Geol Soc Am Bull 126(3–4):438-446.  https://doi.org/10.1130/b30944.1CrossRefGoogle Scholar
  456. Rasmussen B, Muhling JR (2018) Making magnetite late again: evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Precambrian Res 306:64–93.  https://doi.org/10.1016/j.precamres.2017.12.017CrossRefGoogle Scholar
  457. Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359:117–122CrossRefGoogle Scholar
  458. Reddy TR, Zheng X-Y, Roden EE, Beard BL, Johnson CM (2016) Silicon isotope fractionation during microbial reduction of Fe(III)–Si gels under Archean seawater conditions and implications for iron formation genesis. Geochim Cosmochim Acta 190:85–99.  https://doi.org/10.1016/j.gca.2016.06.035CrossRefGoogle Scholar
  459. Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ, Lyons TW, Fischer WW, Wang C, Cole DB, Konhauser KO (2017) Evolution of the global phosphorus cycle. Nature 541(7637):386–389.  https://doi.org/10.1038/nature20772CrossRefGoogle Scholar
  460. Reinhard CT, Planavsky NJ, Lyons TW (2013) Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497(7447):100–103.  https://doi.org/10.1038/nature12021CrossRefGoogle Scholar
  461. Reinhard CT, Raiswell R, Scott C, Anbar AD, Lyons TW (2009) A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326(5953):713–716.  https://doi.org/10.1126/science.1176711CrossRefGoogle Scholar
  462. Rennie VCF, Paris G, Sessions AL, Abramovich S, Turchyn AV, Adkins JF (2018) Cenozoic record of δ34S in foraminiferal calcite implies an early Eocene shift to deep-ocean sulfide burial. Nat Geosci 11(10):761–765.  https://doi.org/10.1038/s41561-018-0200-yCrossRefGoogle Scholar
  463. Reusch DN (2011) New Caledonian carbon sinks at the onset of Antarctic glaciation. Geology 39(9):807–810.  https://doi.org/10.1130/g31981.1CrossRefGoogle Scholar
  464. Reuschel M, Melezhik VA, Whitehouse MJ, Lepland A, Fallick AE, Strauss H (2012) Isotopic evidence for a sizeable seawater sulfate reservoir at 2.1Ga. Precambrian Res 192–195:78–88.  https://doi.org/10.1016/j.precamres.2011.10.013CrossRefGoogle Scholar
  465. Reynolds BC, Frank M, O’Nions RK (1999) Nd- and Pb-isotope time series from Atlantic ferromanganese crusts: implications for changes in provenance and paleocirculation. Earth Planet Sci Lett 173:381–396CrossRefGoogle Scholar
  466. Richter FM, Rowley DB, DePaolo DJ (1992) Sr isotope evolution of seawater: the role of tectonics. Earth Planet Sci Lett 109:11–23CrossRefGoogle Scholar
  467. Robbins LJ, Lalonde SV, Planavsky NJ, Partin CA, Reinhard CT, Kendall B, Scott C, Hardisty DS, Gill BC, Alessi DS, Dupont CL, Saito MA, Crowe SA, Poulton SW, Bekker A, Lyons TW, Konhauser KO (2016) Trace elements at the intersection of marine biological and geochemical evolution. Earth Sci Rev 163:323–348.  https://doi.org/10.1016/j.earscirev.2016.10.013CrossRefGoogle Scholar
  468. Roberts NMW, Spencer CJ (2015) The zircon archive of continent formation through time. Geol Soc Lond Spec Publ 389(1):197–225.  https://doi.org/10.1144/sp389.14CrossRefGoogle Scholar
  469. Roerdink DL, Mason PRD, Farquhar J, Reimer T (2012) Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth Planet Sci Lett 331–332:177–186.  https://doi.org/10.1016/j.epsl.2012.03.020CrossRefGoogle Scholar
  470. Roerdink DL, Mason PRD, Whitehouse MJ, Reimer T (2013) High-resolution quadruple sulfur isotope analyses of 3.2 Ga pyrite from the Barberton Greenstone Belt in South Africa reveal distinct environmental controls on sulfide isotopic arrays. Geochim Cosmochim Acta 117:203–215.  https://doi.org/10.1016/j.gca.2013.04.027CrossRefGoogle Scholar
  471. Rooney AD, Macdonald FA, Strauss JV, Dudas FO, Hallmann C, Selby D (2014) Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian Snowball Earth. Proc Natl Acad Sci USA 111(1):51–56.  https://doi.org/10.1073/pnas.1317266110CrossRefGoogle Scholar
  472. Rooney AD, Strauss JV, Brandon AD, Macdonald FA (2015) A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology 43(5):459–462.  https://doi.org/10.1130/g36511.1CrossRefGoogle Scholar
  473. Rose NM, Rosing MT, Bridgwater D (1996) The origin of metacarbonate rocks in the Archaean Isua Supracrustal Belt, West Greenland. Am J Sci 296:1004–1044CrossRefGoogle Scholar
  474. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464(7289):744–747.  https://doi.org/10.1038/nature08955CrossRefGoogle Scholar
  475. Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland–indications of >3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217(3–4):237–244.  https://doi.org/10.1016/s0012-821x(03)00609-5CrossRefGoogle Scholar
  476. Rouxel OJ, Bekker A, Edwards KJ (2005) Iron Isotope Constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–1091CrossRefGoogle Scholar
  477. Rowley DB (2002) Rate of plate creation and destruction: 180 Ma to present. GSA Bull 114(8):927–933CrossRefGoogle Scholar
  478. Roy S (2006) Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth Sci Rev 77(4):273–305.  https://doi.org/10.1016/j.earscirev.2006.03.004CrossRefGoogle Scholar
  479. Rustad JR, Casey WH, Yin Q-Z, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+ (aq), Ca2 + (aq), and Fe2+ (aq) with carbonate minerals. Geochim Cosmochim Acta 74(22):6301–6323.  https://doi.org/10.1016/j.gca.2010.08.018CrossRefGoogle Scholar
  480. Rye R, Holland HD (1998) Paleosols and the evolution of the atmospheric oxygen: a critical review. Am J Sci 298:621–672CrossRefGoogle Scholar
  481. Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology 34(2).  https://doi.org/10.1130/g22074.1CrossRefGoogle Scholar
  482. Sahoo SK, Planavsky NJ, Jiang G, Kendall B, Owens JD, Wang X, Shi X, Anbar AD, Lyons TW (2016) Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14(5):457–468.  https://doi.org/10.1111/gbi.12182CrossRefGoogle Scholar
  483. Sansjofre P, Cartigny P, Trindade RI, Nogueira AC, Agrinier P, Ader M (2016) Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth. Nat Commun 7:12192.  https://doi.org/10.1038/ncomms12192CrossRefGoogle Scholar
  484. Satkoski AM, Beukes NJ, Li W, Beard BL, Johnson CM (2015) A redox-stratified ocean 3.2 billion years ago. Earth Planet Sci Lett 430:43–53.  https://doi.org/10.1016/j.epsl.2015.08.007CrossRefGoogle Scholar
  485. Satkoski AM, Fralick P, Beard BL, Johnson CM (2017) Initiation of modern-style plate tectonics recorded in Mesoarchean marine chemical sediments. Geochim Cosmochim Acta 209:216–232.  https://doi.org/10.1016/j.gca.2017.04.024CrossRefGoogle Scholar
  486. Satkoski AM, Lowe DR, Beard BL, Coleman ML, Johnson CM (2016) A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga barite. Earth Planet Sci Lett 454:28–35.  https://doi.org/10.1016/j.epsl.2016.08.032CrossRefGoogle Scholar
  487. Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley BF, Han J, Shu D, Li Y (2010) The Ediacaran radiogenic Sr isotope excursion in the Doushantuo formation in the three Gorges area, South China. Precambrian Res 176(1–4):46–64.  https://doi.org/10.1016/j.precamres.2009.10.006CrossRefGoogle Scholar
  488. Schaefer MV, Handler RM, Scherer MM (2017) Fe(II) reduction of pyrolusite (beta-MnO2) and secondary mineral evolution. Geochem Trans 18(1):7.  https://doi.org/10.1186/s12932-017-0045-0CrossRefGoogle Scholar
  489. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of earth history: evolution of a concept. Precambrian Res 106:117–134CrossRefGoogle Scholar
  490. Schidlowski M, Appel PWU, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7 x 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199CrossRefGoogle Scholar
  491. Schirrmeister BE, Gugger M, Donoghue PC (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58(5):769–785.  https://doi.org/10.1111/pala.12178CrossRefGoogle Scholar
  492. Schneiderhan EA, Gutzmer J, Strauss H, Mezger K, Beukes NJ (2006) The chemostratigraphy of a Paleoproterozoic MnF-BIF succession–the Voëlwater Subgroup of the Transvaal Supergroup in Griqualand West, South Africa. S Afr J Geol 109:31–48CrossRefGoogle Scholar
  493. Scholz F, Severmann S, McManus J, Hensen C (2014a) Beyond the Black Sea paradigm: the sedimentary fingerprint of an open-marine iron shuttle. Geochim Cosmochim Acta 127:368–380.  https://doi.org/10.1016/j.gca.2013.11.041CrossRefGoogle Scholar
  494. Scholz F, Severmann S, McManus J, Noffke A, Lomnitz U, Hensen C (2014b) On the isotope composition of reactive iron in marine sediments: redox shuttle versus early diagenesis. Chem Geol 389:48–59.  https://doi.org/10.1016/j.chemgeo.2014.09.009CrossRefGoogle Scholar
  495. Schrag DP, Berner RA, Hoffman PF, Halverson GP (2002) On the initiation of a Snowball Earth. Geochem Geophys Geosyst 3(6):1–21.  https://doi.org/10.1029/2001GC000219CrossRefGoogle Scholar
  496. Schröder S, Bedorf D, Beukes NJ, Gutzmer J (2011) From BIF to red beds: Sedimentology and sequence stratigraphy of the Paleoproterozoic Koegas Subgroup (South Africa). Sed Geol 236(1–2):25–44.  https://doi.org/10.1016/j.sedgeo.2010.11.007CrossRefGoogle Scholar
  497. Schröder S, Lacassie JP, Beukes NJ (2006) Stratigraphic and geochemical framework of the Agouron drill cores, Transvaal Supergroup (Neoarchean-Paleoproterozoic, South Africa). S Afr J Geol 109:23–54CrossRefGoogle Scholar
  498. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452(7186):456–459.  https://doi.org/10.1038/nature06811CrossRefGoogle Scholar
  499. Scott C, Wing BA, Bekker A, Planavsky NJ, Medvedev P, Bates SM, Yun M, Lyons TW (2014) Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet Sci Lett 389:95–104.  https://doi.org/10.1016/j.epsl.2013.12.010CrossRefGoogle Scholar
  500. Seton M, Gaina C, Muller RD, Heine C (2009) Mid-Cretaceous seafloor spreading pulse: fact or fiction? Geology 37(8):687–690.  https://doi.org/10.1130/g25624a.1CrossRefGoogle Scholar
  501. Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70(8):2006–2022.  https://doi.org/10.1016/j.gca.2006.01.007CrossRefGoogle Scholar
  502. Severmann S, Lyons TW, Anbar A, McManus J, Gordon G (2008) Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36(6).  https://doi.org/10.1130/g24670a.1CrossRefGoogle Scholar
  503. Shahar A, Young ED, Manning CE (2008) Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet Sci Lett 268(3–4):330–338.  https://doi.org/10.1016/j.epsl.2008.01.026CrossRefGoogle Scholar
  504. Shields G, Veizer J (2002) Precambrian marine carbonate isotope database: Version 1.1. Geochem Geophys Geosyst 3(6):1–12.  https://doi.org/10.1029/2001gc000266CrossRefGoogle Scholar
  505. Shields GA (2007) A normalised seawater strontium isotope curve: possible implications for Neoproterozoic-Cambrian weathering rates and the further oxygenation of the Earth. eEarth 2:35–42CrossRefGoogle Scholar
  506. Shields-Zhou G, Och L (2011) The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21(3):4–11.  https://doi.org/10.1130/gsatg102a.1CrossRefGoogle Scholar
  507. Shirey SB, Richardson SH (2011) Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333(6041):434–436.  https://doi.org/10.1126/science.1206275CrossRefGoogle Scholar
  508. Siahi M, Hofmann A, Master S, Wilson A, Mayr C (2018) Trace element and stable (C, O) and radiogenic (Sr) isotope geochemistry of stromatolitic carbonate rocks of the Mesoarchaean Pongola Supergroup: implications for seawater composition. Chem Geol 476:389–406.  https://doi.org/10.1016/j.chemgeo.2017.11.036CrossRefGoogle Scholar
  509. Siebert C, Nägler TF, von Blanckenburg F, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211(1–2):159–171.  https://doi.org/10.1016/s0012-821x(03)00189-4CrossRefGoogle Scholar
  510. Slotznick SP, Eiler JM, Fischer WW (2018) The effects of metamorphism on iron mineralogy and the iron speciation redox proxy. Geochim Cosmochim Acta 224:96–115.  https://doi.org/10.1016/j.gca.2017.12.003CrossRefGoogle Scholar
  511. Smit MA, Mezger K (2017) Earth’s early O2 cycle suppressed by primitive continents. Nat Geosci 10(10):788–792.  https://doi.org/10.1038/ngeo3030CrossRefGoogle Scholar
  512. Smith AJB (2007) The paleo-environmental significance of the iron-formations and iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan Basin. University of Johannesburg, South AfricaGoogle Scholar
  513. Smith AJB, Beukes NJ, Gutzmer J (2013) The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ Geol 108:111–134CrossRefGoogle Scholar
  514. Smith AJB, Beukes NJ, Gutzmer J, Czaja AD, Johnson CM, Nhleko N (2017) Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, Southern Africa: textural and geochemical evidence for biological activity during iron deposition. Geobiology 15(6):731–749.  https://doi.org/10.1111/gbi.12248CrossRefGoogle Scholar
  515. Smithies RH, Champion DC, Van Kranendonk MJ (2007) Chapter 4.2 The oldest well-preserved felsic volcanic rocks on earth: geochemical clues to the early evolution of the pilbara supergroup and implications for the growth of a Paleoarchean protocontinent. In: Earth’s oldest rocks. Developments in Precambrian geology, pp 339–367.  https://doi.org/10.1016/s0166-2635(07)15042-8CrossRefGoogle Scholar
  516. Smithies RH, Champion DC, Van Kranendonk MJ, Howard HM, HIckman AH (2005) Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intraoceanic arc. Earth Planet Sci Lett 231:221–237CrossRefGoogle Scholar
  517. Sørensen J, Jørgensen BB (1987) Early diagenesis in sediments from Danish coastal waters: microbial activity and Mn-Fe-S geochemistry. Geochim Cosmochim Acta 51:1583–1590CrossRefGoogle Scholar
  518. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M, Halverson GP, Macdonald FA, Knoll AH, Johnston DT (2015) Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523(7561):451–454.  https://doi.org/10.1038/nature14589CrossRefGoogle Scholar
  519. Squire R, Campbell I, Allen C, Wilson C (2006) Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth Planet Sci Lett 250(1–2):116–133.  https://doi.org/10.1016/j.epsl.2006.07.032CrossRefGoogle Scholar
  520. Steinhoefel G, von Blanckenburg F, Horn I, Konhauser KO, Beukes NJ, Gutzmer J (2010) Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochim Cosmochim Acta 74(9):2677–2696.  https://doi.org/10.1016/j.gca.2010.01.028CrossRefGoogle Scholar
  521. Stolper DA, Keller CB (2018) A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553(7688):323–327.  https://doi.org/10.1038/nature25009CrossRefGoogle Scholar
  522. Sugitani K (2019) Early Archean (Pre-3.0 Ga) cellularly preserved microfossils and microfossil-like structures from the Pilbara Craton, Western Australia—a review. In: Earth’s oldest rocks, pp 1007–1028.  https://doi.org/10.1016/b978-0-444-63901-1.00041-1CrossRefGoogle Scholar
  523. Sumner DY (1997) Carbonate precipitation and oxygen stratification in Late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco formations, transvaal supergroup, South Africa. Am J Sci 297:455–487CrossRefGoogle Scholar
  524. Sumner DY, Beukes NJ (2006) Sequence Stratigraphic Development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa. S Afr J Geol 109:11–22CrossRefGoogle Scholar
  525. Swanson-Hysell NL, Rose CV, Calmet CC, Halverson GP, Hurtgen MT, Maloof AC (2010) Cryogenian glaciation and the onset of carbon-isotope decoupling. Science 328(5978):608–611.  https://doi.org/10.1126/science.1184508CrossRefGoogle Scholar
  526. Sweere TC, Dickson AJ, Jenkyns HC, Porcelli D, Elrick M, van den Boorn SHJM, Henderson GM (2018) Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous). Geology 46(5):463–466.  https://doi.org/10.1130/g40226.1CrossRefGoogle Scholar
  527. Syverson DD, Borrok DM, Seyfried WE (2013) Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim Cosmochim Acta 122:170–183.  https://doi.org/10.1016/j.gca.2013.08.027CrossRefGoogle Scholar
  528. Tahata M, Sawaki Y, Yoshiya K, Nishizawa M, Komiya T, Hirata T, Yoshida N, Maruyama S, Windley BF (2015) The marine environments encompassing the Neoproterozoic glaciations: evidence from C, Sr and Fe isotope ratios in the Hecla Hoek Supergroup in Svalbard. Precambrian Res 263:19–42.  https://doi.org/10.1016/j.precamres.2015.03.007CrossRefGoogle Scholar
  529. Takashima R, Nishi H, Huber BT, Leckie RM (2006) Greenhouse world and the mesozoic ocean. Oceanography 19:82–92CrossRefGoogle Scholar
  530. Tang D, Shi X, Wang X, Jiang G (2016) Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Res 276:145–157.  https://doi.org/10.1016/j.precamres.2016.02.005CrossRefGoogle Scholar
  531. Tebo BM (1991) Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Sea Res Part A Oceanogr Res Pap 38:S883–S905.  https://doi.org/10.1016/s0198-0149(10)80015-9CrossRefGoogle Scholar
  532. Tessin A, Sheldon ND, Hendy I, Chappaz A (2016) Iron limitation in the Western Interior Seaway during the late cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation. Earth Planet Sci Lett 449:135–144.  https://doi.org/10.1016/j.epsl.2016.05.043CrossRefGoogle Scholar
  533. Thamdrup B, Fossing H, Jorgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58(23):5115–5129CrossRefGoogle Scholar
  534. Thamdrup B, Rossello-Mora R, Amann R (2000) Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol 66:2888–2897CrossRefGoogle Scholar
  535. Them TR 2nd, Gill BC, Caruthers AH, Gerhardt AM, Grocke DR, Lyons TW, Marroquin SM, Nielsen SG, Trabucho Alexandre JP, Owens JD (2018) Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. Proc Natl Acad Sci USA 115(26):6596–6601.  https://doi.org/10.1073/pnas.1803478115CrossRefGoogle Scholar
  536. Thibon F, Blichert-Toft J, Tsikos H, Foden J, Albalat E, Albarede F (2019) Dynamics of oceanic iron prior to the Great Oxygenation Event. Earth Planet Sci Lett 506:360–370.  https://doi.org/10.1016/j.epsl.2018.11.016CrossRefGoogle Scholar
  537. Torres MA, West AJ, Li G (2014) Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 507(7492):346–349.  https://doi.org/10.1038/nature13030CrossRefGoogle Scholar
  538. Trabucho Alexandre J, Tuenter E, Henstra GA, van der Zwan KJ, van de Wal RSW, Dijkstra HA, de Boer PL (2010) The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs. Paleoceanography 25(4):n/a-n/a.  https://doi.org/10.1029/2010pa001925CrossRefGoogle Scholar
  539. Tsikos H, Beukes NJ, Moore JM, Harris C (2003) Deposition, diagenesis, and secondary enrichment of metals in the Paleoproterozoic Hotazel iron formation, Kalahari Manganese Field, South Africa. Econ Geol 98:1449–1462Google Scholar
  540. Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, Erba E, Premoli Silva I, Baas M, Wagner T, Sinninghe Damste JS (2004) Carbon-isotope stratigraphy recorded by the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key localities. J Geol Soc Lond 161:711–719CrossRefGoogle Scholar
  541. Tsikos H, Matthews A, Erel Y, Moore JM (2010) Iron isotopes constrain biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic stratified basin. Earth Planet Sci Lett 298(1–2):125–134.  https://doi.org/10.1016/j.epsl.2010.07.032CrossRefGoogle Scholar
  542. Tsikos H, Moore JM (1997) Petrography and Geochemistry of the Paleoproterozoic Hotazel iron-formation, Kalahari manganese field, South Africa: implications for precambrian manganese metallogenesis. Econ Geol 92:87–97CrossRefGoogle Scholar
  543. Tsikos H, Moore JM, Harris C (2001) Geochemistry of the Palaeoproterozoic mooidraai formation: Fe-rich limestone as end member of iron formation deposition, Kalahari manganese field, Transvaal Supergroup, South Africa. J Afr Earth Sci 32(1):19–27CrossRefGoogle Scholar
  544. Turgeon SC, Creaser RA (2008) Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454(7202):323–326.  https://doi.org/10.1038/nature07076CrossRefGoogle Scholar
  545. Tyrell T (1999) The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525–531CrossRefGoogle Scholar
  546. Ueno Y, Yurimoto H, Yoshioka H, Komiya T, Maruyama S (2002) Ion microprobe analysis of graphite from ca. 3.8 Ga metasediments, Isua supracrustal belt, West Greenland: relationship between metamorphism and carbon isotopic composition. Geochim Cosmochim Acta 66(7):1257CrossRefGoogle Scholar
  547. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Miner Petrol 150(6):561–580.  https://doi.org/10.1007/s00410-005-
  548. Van Cappellen P, Ingall EI (1994) Benthic phosphorus regeneration, net primary production, and ocean anoxia: a model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9:677–692CrossRefGoogle Scholar
  549. van de Flierdt T, Frank M, Halliday AN, Hein JR, Hattendorf B, Günther D, Kubik PW (2004a) Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years. Paleoceanography 19(1):n/a-n/a.  https://doi.org/10.1029/2003pa000923CrossRefGoogle Scholar
  550. van de Flierdt T, Frank M, Lee D-C, Halliday AN, Reynolds BC, Hein JR (2004b) New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts. Geochim Cosmochim Acta 68(19):3827–3843.  https://doi.org/10.1016/j.gca.2004.03.009CrossRefGoogle Scholar
  551. van Helmond NAGM, Ruvalcaba I, Baroni AS, Sinninghe Damste JS, Slomp CP (2014) Spatial extent and degree of oxygen depletion in the deep proto-North Atlantic basin during Oceanic Anoxic Event 2. Geochem Geophys Geosyst 15:4254–4266.  https://doi.org/10.1002/2014GC005528CrossRefGoogle Scholar
  552. Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490-3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74(3–4):197–240.  https://doi.org/10.1016/j.earscirev.2005.09.005CrossRefGoogle Scholar
  553. Van Kranendonk MJ (2014) Earth’s early atmosphere and surface environments: a review. In: Earth’s early atmosphere and surface environment. Geol Soc Am Spec Pap 105–130.  https://doi.org/10.1130/2014.2504(12)
  554. Van Kranendonk MJ, Kirkland CL (2016) Conditioned duality of the Earth system: geochemical tracing of the supercontinent cycle through Earth history. Earth Sci Rev 160:171–187.  https://doi.org/10.1016/j.earscirev.2016.05.009CrossRefGoogle Scholar
  555. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167(1–2):93–124.  https://doi.org/10.1016/j.precamres.2008.07.003CrossRefGoogle Scholar
  556. Van Kranendonk MJ, Smithies RH, Champion DC (2019) Paleoarchean development of a continental nucleus. In: Earth’s oldest rocks, pp 437–462.  https://doi.org/10.1016/b978-0-444-63901-1.00019-8CrossRefGoogle Scholar
  557. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007a) Chapter 4.1 Paleoarchean development of a continental nucleus: the East Pilbara Terrane of the Pilbara Craton, Western Australia. Developments in Precambrian geology 15:307–337Google Scholar
  558. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007b) Chapter 4.1 Paleoarchean development of a continental nucleus: the East Pilbara Terrane of the Pilbara Craton, Western Australia. In: Earth’s oldest rocks. Developments in Precambrian geology, pp 307–337.  https://doi.org/10.1016/s0166-2635(07)15041-6CrossRefGoogle Scholar
  559. van Zuilen MA, Lepland A, Teranes J, Finarelli J, Wahlen M, Arrhenius G (2003) Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, Southern West Greenland. Precambrian Res 126(3–4):331–348.  https://doi.org/10.1016/s0301-9268(03)00103-7CrossRefGoogle Scholar
  560. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67CrossRefGoogle Scholar
  561. Viehmann S, Bau M, Hoffmann JE, Münker C (2015) Geochemistry of the Krivoy Rog banded iron formation, Ukraine, and the impact of peak episodes of increased global magmatic activity on the trace element composition of Precambrian seawater. Precambrian Res 270:165–180.  https://doi.org/10.1016/j.precamres.2015.09.015CrossRefGoogle Scholar
  562. Virtasalo JJ, Laitala JJ, Lahtinen R, Whitehouse MJ (2015) Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland. Earth Planet Sci Lett 432:449–460.  https://doi.org/10.1016/j.epsl.2015.09.010CrossRefGoogle Scholar
  563. Voegelin AR, Nägler TF, Beukes NJ, Lacassie JP (2010) Molybdenum isotopes in late Archean carbonate rocks: implications for early Earth oxygenation. Precambrian Res 182(1–2):70–82.  https://doi.org/10.1016/j.precamres.2010.07.001CrossRefGoogle Scholar
  564. von Blanckenburg F, Mamberti M, Schoenberg R, Kamber BS, Webb GE (2008) The iron isotope composition of microbial carbonate. Chem Geol 249(1–2):113–128.  https://doi.org/10.1016/j.chemgeo.2007.12.001CrossRefGoogle Scholar
  565. Wabo H, Maré LP, Beukes NJ, Kruger SJ, Humbert F, de Kock MO (2018) Mineral transformations during thermal demagnetization of sideritic jasper mesobands in jaspilites of the ~3.25 Ga Fig Tree Group in the Barberton Greenstone Belt, Kaapvaal craton (South Africa). S Afr J Geol 121(2):131–140.  https://doi.org/10.25131/sajg.121.0010CrossRefGoogle Scholar
  566. Walker JCG, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86(C10).  https://doi.org/10.1029/jc086ic10p09776CrossRefGoogle Scholar
  567. Wang X, Planavsky NJ, Hofmann A, Saupe EE, De Corte BP, Philippot P, LaLonde SV, Jemison NE, Zou H, Ossa FO, Rybacki K, Alfimova N, Larson MJ, Tsikos H, Fralick PW, Johnson TM, Knudsen AC, Reinhard CT, Konhauser KO (2018) A Mesoarchean shift in uranium isotope systematics. Geochim Cosmochim Acta 238:438–452.  https://doi.org/10.1016/j.gca.2018.07.024CrossRefGoogle Scholar
  568. Wang X, Planavsky NJ, Reinhard CT, Hein JR, Johnson TM (2016a) A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts. Am J Sci 316(1):64–83.  https://doi.org/10.2475/01.2016.02CrossRefGoogle Scholar
  569. Wang X, Reinhard CT, Planavsky NJ, Owens JD, Lyons TW, Johnson TM (2016b) Sedimentary chromium isotopic compositions across the Cretaceous OAE2 at Demerara Rise Site 1258. Chem Geol 429:85–92.  https://doi.org/10.1016/j.chemgeo.2016.03.006CrossRefGoogle Scholar
  570. Wang X, Shi X, Zhao X, Tang D (2015) Increase of seawater Mo inventory and ocean oxygenation during the early Cambrian. Palaeogeogr Palaeoclimatol Palaeoecol 440:621–631.  https://doi.org/10.1016/j.palaeo.2015.09.003CrossRefGoogle Scholar
  571. Wanner C, Sonnenthal EL, Liu X-M (2014) Seawater δ7Li: a direct proxy for global CO2 consumption by continental silicate weathering? Chem Geol 381:154–167.  https://doi.org/10.1016/j.chemgeo.2014.05.005CrossRefGoogle Scholar
  572. Ward LM, Rasmussen B, Fischer WW (2019) Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J Geophys Res Biogeosci 124(2):211–226.  https://doi.org/10.1029/2018jg004679CrossRefGoogle Scholar
  573. Wasylenki LE, Rolfe BA, Weeks CL, Spiro TG, Anbar AD (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72(24):5997–6005.  https://doi.org/10.1016/j.gca.2008.08.027CrossRefGoogle Scholar
  574. Wazne M, Korfiatis GP, Meng X (2003) Carbonate effects on hexavalent Uranium adsorption by iron oxyhyroxide. Environ Sci Technol 37:3619–3624CrossRefGoogle Scholar
  575. Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764CrossRefGoogle Scholar
  576. Wei W, Frei R, Klaebe R, Li D, Wei G-Y, Ling H-F (2018) Redox condition in the Nanhua Basin during the waning of the Sturtian glaciation: a chromium-isotope perspective. Precambrian Res 319:198–210.  https://doi.org/10.1016/j.precamres.2018.02.009CrossRefGoogle Scholar
  577. Wen H, Fan H, Zhang Y, Cloquet C, Carignan J (2015) Reconstruction of early Cambrian ocean chemistry from Mo isotopes. Geochim Cosmochim Acta 164:1–16.  https://doi.org/10.1016/j.gca.2015.05.008CrossRefGoogle Scholar
  578. Westerhold T, Röhl U, Donner B, Zachos JC (2018) Global extent of early eocene hyperthermal events: a new Pacific benthic foraminiferal isotope record from Shatsky Rise (ODP Site 1209). Paleoceanogr Paleoclimatology 33(6):626–642.  https://doi.org/10.1029/2017pa003306CrossRefGoogle Scholar
  579. Westermann S, Vance D, Cameron V, Archer C, Robinson SA (2014) Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2. Earth Planet Sci Lett 404:178–189.  https://doi.org/10.1016/j.epsl.2014.07.018CrossRefGoogle Scholar
  580. Whitehouse MJ, Fedo CM (2007) Microscale heterogeneity of Fe isotopes in >3.71 Ga banded iron formation from the Isua Greenstone Belt, Southwest Greenland. Geology 35(8).  https://doi.org/10.1130/g23582a.1CrossRefGoogle Scholar
  581. Whitehouse MJ, Kamber BS, Fedo CM, Lepland A (2005) Integrated Pb- and S-isotope investigation of sulphide minerals from the early Archaean of southwest Greenland. Chem Geol 222(1–2):112–131.  https://doi.org/10.1016/j.chemgeo.2005.06.004CrossRefGoogle Scholar
  582. Whitehouse MJ, Myers JS, Fedo CM (2009) The Akilia Controversy: field, structural and geochronological evidence questions interpretations of >3.8 Ga life in SW Greenland. J Geol Soc 166(2):335–348.  https://doi.org/10.1144/0016-76492008-070CrossRefGoogle Scholar
  583. Whitehouse MJ, Schoenberg R, Fedo CM, Kamber BS (2015) Does a heavy Fe-isotope composition of Akilia quartz-amphibole-pyroxene rocks necessitate a BIF origin? Astrobiology 15(10):816–824.  https://doi.org/10.1089/ast.2015.1362CrossRefGoogle Scholar
  584. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836CrossRefGoogle Scholar
  585. Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211(3–4):343–362.  https://doi.org/10.1016/j.chemgeo.2004.07.002CrossRefGoogle Scholar
  586. Willbold M, Hibbert K, Lai Y-J, Freymuth H, Hin RC, Coath C, Vils F, Elliott T (2015) High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined by Double-Spike MC-ICP-MS. Geostand Geoanalytical Res n/a-n/a.  https://doi.org/10.1111/ggr.12109
  587. Wille M, Kramers JD, Nägler TF, Beukes NJ, Schröder S, Meisel T, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta 71(10):2417–2435.  https://doi.org/10.1016/j.gca.2007.02.019CrossRefGoogle Scholar
  588. Williford KH, Van Kranendonk MJ, Ushikubo T, Kozdon R, Valley JW (2011) Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim Cosmochim Acta 75(19):5686–5705.  https://doi.org/10.1016/j.gca.2011.07.010CrossRefGoogle Scholar
  589. Wortmann UG, Paytan A (2012) Rapid variability of seawater chemistry over the past 130 million years. Science 337(6092):334–336.  https://doi.org/10.1126/science.1220656CrossRefGoogle Scholar
  590. Wu L, Beard BL, Roden EE, Kennedy CB, Johnson CM (2010) Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions. Geochim Cosmochim Acta 74(15):4249–4265.  https://doi.org/10.1016/j.gca.2010.04.060CrossRefGoogle Scholar
  591. Wu L, Druschel G, Findlay A, Beard BL, Johnson CM (2012a) Experimental determination of iron isotope fractionations among Fe2þ–FeSaq–Mackinawite at low temperatures: implications for the rock record. Geochim Cosmochim Acta 89:46–61.  https://doi.org/10.1016/j.gca.2012.04.047CrossRefGoogle Scholar
  592. Wu L, Percak-Dennett EM, Beard BL, Roden EE, Johnson CM (2012b) Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe–Si coprecipitates and implications for iron isotope variations in the ancient rock record. Geochim Cosmochim Acta 84:14–28.  https://doi.org/10.1016/j.gca.2012.01.007CrossRefGoogle Scholar
  593. Xiang L, Schoepfer SD, Shen S-z, Cao C-q, Zhang H (2017) Evolution of oceanic molybdenum and uranium reservoir size around the Ediacaran-Cambrian transition: evidence from western Zhejiang, South China. Earth Planet Sci Lett 464:84–94.  https://doi.org/10.1016/j.epsl.2017.02.012CrossRefGoogle Scholar
  594. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289:1724–1730CrossRefGoogle Scholar
  595. Yamaguchi KE (2002) Geochemistry of Archean-Paleoproterozoic black shales: the early evolution of the atmosphere, oceans, and biosphere. The Pennsylvania State University, PhDGoogle Scholar
  596. Yamaguchi KE, Johnson CM, Beard BL, Beukes NJ, Gutzmer J, Ohmoto H (2007) Isotopic evidence for iron mobilization during Paleoproterozoic lateritization of the Hekpoort paleosol profile from Gaborone, Botswana. Earth Planet Sci Lett 256(3–4):577–587.  https://doi.org/10.1016/j.epsl.2007.02.010CrossRefGoogle Scholar
  597. Yamaguchi KE, Johnson CM, Beard BL, Ohmoto H (2005) Biogeochemical cycling of iron in the Archean-Paleoproterozoic earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chem Geol 218(1–2):135–169.  https://doi.org/10.1016/j.chemgeo.2005.01.020CrossRefGoogle Scholar
  598. Yamaguchi KE, Ohmoto H (2006) Geochemical and isotopic constraints on the origin of Paleoproterozoic red shales of the Gamagara/Mapedi formation, Postmasburg Group, South Africa. S Afr J Geol 109:123–138CrossRefGoogle Scholar
  599. Yang S, Kendall B, Lu X, Zhang F, Zheng W (2017) Uranium isotope compositions of mid-Proterozoic black shales: Evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Res 298:187–201.  https://doi.org/10.1016/j.precamres.2017.06.016CrossRefGoogle Scholar
  600. Yang W, Holland HD (2003) The Hekpoort paleosol profile in Strata 1 at Gaborone, Botswana: soil formation during the Great Oxidation Event. Am J Sci 303:187–220CrossRefGoogle Scholar
  601. Yao W, Paytan A, Wortmann UG (2018) Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum. Science 361:804–806CrossRefGoogle Scholar
  602. Yeung LY (2017) Low oxygen and argon in the Neoproterozoic atmosphere at 815 Ma. Earth Planet Sci Lett 480:66–74.  https://doi.org/10.1016/j.epsl.2017.09.044CrossRefGoogle Scholar
  603. Yoshiya K, Sawaki Y, Hirata T, Maruyama S, Komiya T (2015a) In-situ iron isotope analysis of pyrites in ~ 3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chem Geol 401:126–139.  https://doi.org/10.1016/j.chemgeo.2015.02.022CrossRefGoogle Scholar
  604. Yoshiya K, Sawaki Y, Shibuya T, Yamamoto S, Komiya T, Hirata T, Maruyama S (2015b) In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chem Geol 403:58–73.  https://doi.org/10.1016/j.chemgeo.2015.03.007CrossRefGoogle Scholar
  605. Young GM, von Brumm V, Gold DJC, Minter WEL (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (~2.9 Ga) of South Africa. J Geol 106:523–538CrossRefGoogle Scholar
  606. Zachos JC, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001:686–693CrossRefGoogle Scholar
  607. Zakharov DO, Bindeman IN (2019) Triple oxygen and hydrogen isotopic study of hydrothermally altered rocks from the 2.43–2.41 Ga Vetreny belt, Russia: an insight into the early Paleoproterozoic seawater. Geochim Cosmochim Acta 248:185–209.  https://doi.org/10.1016/j.gca.2019.01.014CrossRefGoogle Scholar
  608. Zeng Z, Pike M, Tice MM, Kelly C, Marcantonio F, Xu G, Maulana I (2018) Iron fertilization of primary productivity by volcanic ash in the Late Cretaceous (Cenomanian) Western Interior Seaway. Geology 46(10):859–862.  https://doi.org/10.1130/g45304.1CrossRefGoogle Scholar
  609. Zentner DB (2014) Stratigraphy, sedimentology and provenance of the ca. 3.26 Ga Mapepe formation in the Manzimnyama Syncline, Barberton Greenstone Belt, South Africa. M.S., Stanford University,Google Scholar
  610. Zhang F, Zhu X, Yan B, Kendall B, Peng X, Li J, Algeo TJ, Romaniello S (2015) Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions. Earth Planet Sci Lett 429:11–19.  https://doi.org/10.1016/j.epsl.2015.07.021CrossRefGoogle Scholar
  611. Zhang S, Wang X, Wang H, Bjerrum CJ, Hammarlund EU, Costa MM, Connelly JN, Zhang B, Su J, Canfield DE (2016) Sufficient oxygen for animal respiration 1,400 million years ago. Proc Natl Acad Sci USA 113(7):1731–1736.  https://doi.org/10.1073/pnas.1523449113CrossRefGoogle Scholar
  612. Zhang YG, Pagani M, Liu Z, Bohaty SM, Deconto R (2013) A 40-million-year history of atmospheric CO(2). Philos Trans A Math Phys Eng Sci 371(2001):20130096.  https://doi.org/10.1098/rsta.2013.0096CrossRefGoogle Scholar
  613. Zheng X-Y, Beard BL, Reddy TR, Roden EE, Johnson CM (2016) Abiologic silicon isotope fractionation between aqueous Si and Fe(III)–Si gel in simulated Archean seawater: implications for Si isotope records in Precambrian sedimentary rocks. Geochim Cosmochim Acta 187:102–122.  https://doi.org/10.1016/j.gca.2016.05.012CrossRefGoogle Scholar
  614. Zheng X-Y, Jenkyns HC, Gale AS, Ward DJ, Henderson GM (2013) Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian–Turonian): Evidence from Nd-isotopes in the European shelf sea. Earth Planet Sci Lett 375:338–348.  https://doi.org/10.1016/j.epsl.2013.05.053CrossRefGoogle Scholar
  615. Zhou X, Jenkyns HC, Lu W, Hardisty DS, Owens JD, Lyons TW, Lu Z (2017) Organically bound iodine as a bottom-water redox proxy: preliminary validation and application. Chem Geol 457:95–106.  https://doi.org/10.1016/j.chemgeo.2017.03.016CrossRefGoogle Scholar
  616. Zhou X, Jenkyns HC, Owens JD, Junium CK, Zheng X-Y, Sageman BB, Hardisty DS, Lyons TW, Ridgwell A, Lu Z (2015) Upper ocean oxygenation dynamics from I/Ca ratios during the Cenomanian-Turonian OAE 2. Paleoceanography 30(5):510–526.  https://doi.org/10.1002/2014pa002741CrossRefGoogle Scholar
  617. Zhu X-K, O’Nions RK, Guo Y, Reynolds BC (2000) Secular variation of iron isotopes in North Atlantic deep water. Science 287:2000–2002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations