Advertisement

The Modern Surficial World

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

The relatively large isotopic fractionations found for all stable isotope systems at low temperatures has attracted extensive interest in low-temperature environments, and stable Fe isotopes are no exception. The organization of this chapter starts with the continents, addressing weathering and soil-formation processes. We then move to terrestrial rivers and groundwater systems, followed by discussion of redox-stratified water bodies and their sediments, including lakes and the Black Sea. Next, we focus on modern marine sediments, which record extensive Fe biogeochemical cycling and authigenic mineral formation that is key to understanding the modern marine Fe budget.

References

  1. Akerman A, Poitrasson F, Oliva P, Audry S, Prunier J, Braun J-J (2014) The isotopic fingerprint of Fe cycling in an equatorial soil–plant–water system: the Nsimi watershed, South Cameroon. Chem Geol 385:104–116.  https://doi.org/10.1016/j.chemgeo.2014.07.003CrossRefGoogle Scholar
  2. Anderson RF, Raiswell R (2004) Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Am J Sci 304:203–233CrossRefGoogle Scholar
  3. Azrieli-Tal I, Matthews A, Bar-Matthews M, Almogi-Labin A, Vance D, Archer C, Teutsch N (2014) Evidence from molybdenum and iron isotopes and molybdenum–uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation. Earth Planet Sci Lett 393:231–242.  https://doi.org/10.1016/j.epsl.2014.02.054CrossRefGoogle Scholar
  4. Beard BL, Handler RM, Scherer MM, Wu L, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295(1–2):241–250.  https://doi.org/10.1016/j.epsl.2010.04.006CrossRefGoogle Scholar
  5. Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient earth and other planetary bodies. Rev Miner Geochem 55:319–357CrossRefGoogle Scholar
  6. Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geol Soc Am 31(7):629–632CrossRefGoogle Scholar
  7. Beaulieu SE, Baker ET, German CR (2015) Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep Sea Res Part II 121:202–212.  https://doi.org/10.1016/j.dsr2.2015.05.001CrossRefGoogle Scholar
  8. Bennett SA, Achterberg EP, Connelly DP, Statham PJ, Fones GR, German CR (2008) The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth Planet Sci Lett 270(3–4):157–167.  https://doi.org/10.1016/j.epsl.2008.01.048CrossRefGoogle Scholar
  9. Bennett SA, Rouxel O, Schmidt K, Garbe-Schönberg D, Statham PJ, German CR (2009) Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochim Cosmochim Acta 73(19):5619–5634.  https://doi.org/10.1016/j.gca.2009.06.027CrossRefGoogle Scholar
  10. Benning LG, Wilkin RT, Barnes HL (2000) Reaction pathways in the Fe-S system below 100C. Chem Geol 167:25–51CrossRefGoogle Scholar
  11. Berger CJM, Lippiatt SM, Lawrence MG, Bruland KW (2008) Application of a chemical leach technique for estimating labile particulate aluminum, iron, and manganese in the Columbia River plume and coastal waters off Oregon and Washington. J Geophys Res 113.  https://doi.org/10.1029/2007jc004703
  12. Bergquist BA, Boyle EA (2006a) Dissolved iron in the tropical and subtropical Atlantic Ocean. Glob Biogeochem Cycles 20(1):n/a-n/a.  https://doi.org/10.1029/2005gb002505CrossRefGoogle Scholar
  13. Bergquist BA, Boyle EA (2006b) Iron isotopes in the Amazon River system: weathering and transport signatures. Earth Planet Sci Lett 248(1–2):54–68.  https://doi.org/10.1016/j.epsl.2006.05.004CrossRefGoogle Scholar
  14. Bergquist BA, Wu J, Boyle EA (2007) Variability in oceanic dissolved iron is dominated by the colloidal fraction. Geochim Cosmochim Acta 71(12):2960–2974.  https://doi.org/10.1016/j.gca.2007.03.013CrossRefGoogle Scholar
  15. Bernard A, Symonds RB (1989) The significance of siderite in the sediments from Lake Nyos, Cameroon. J Volcanol Geoth Res 39:187–194CrossRefGoogle Scholar
  16. Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23CrossRefGoogle Scholar
  17. Blanchet CL, Thouveny N, Vidal L (2009) Formation and preservation of greigite (Fe3S4) in sediments from the Santa Barbara Basin: implications for paleoenvironmental changes during the past 35 ka. Paleoceanography 24(2):n/a-n/a.  https://doi.org/10.1029/2008pa001719CrossRefGoogle Scholar
  18. Boiteau RM, Mende DR, Hawco NJ, McIlvin MR, Fitzsimmons JN, Saito MA, Sedwick PN, DeLong EF, Repeta DJ (2016) Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc Natl Acad Sci USA 113(50):14237–14242.  https://doi.org/10.1073/pnas.1608594113CrossRefGoogle Scholar
  19. Borrok DM, Wanty RB, Ian Ridley W, Lamothe PJ, Kimball BA, Verplanck PL, Runkel RL (2009) Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed. Appl Geochem 24(7):1270–1277.  https://doi.org/10.1016/j.apgeochem.2009.03.010CrossRefGoogle Scholar
  20. Boyd PW, Ellwood MJ (2010) The biogeochemical cycle of iron in the ocean. Nat Geosci 3(10):675–682.  https://doi.org/10.1038/ngeo964CrossRefGoogle Scholar
  21. Boyle EA, Edmond JM, Sholkovitz ER (1977) The mechanism of iron removal in estuaries. Geochim Cosmochim Acta 41:1313–1324CrossRefGoogle Scholar
  22. Bruland KW, Orians KJ, Cowen JP (1994) Reactive trace metals in the stratified central North Pacific. Geochim Cosmochim Acta 58(15):3171–3182CrossRefGoogle Scholar
  23. Buck KN, Sedwick PN, Sohst B, Carlson CA (2018) Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16). Mar Chem 201:229–241.  https://doi.org/10.1016/j.marchem.2017.11.007CrossRefGoogle Scholar
  24. Buck KN, Sohst B, Sedwick PN (2015) The organic complexation of dissolved iron along the US. GEOTRACES (GA03) North Atlantic section. Deep Sea Res Part II 116:152–165.  https://doi.org/10.1016/j.dsr2.2014.11.016CrossRefGoogle Scholar
  25. Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geol Soc Am 29(8):699–702Google Scholar
  26. Bura-Nakić E, Viollier E, Jézéquel D, Thiam A, Ciglenečki I (2009) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266(3–4):311–317.  https://doi.org/10.1016/j.chemgeo.2009.06.020CrossRefGoogle Scholar
  27. Busigny V, Jézéquel D, Cosmidis J, Viollier E, Benzerara K, Planavsky NJ, Albéric P, Lebeau O, Sarazin G, Michard G (2016) The Iron wheel in Lac Pavin: interaction with phosphorus cycle. In: Lake Pavin, pp 205–220.  https://doi.org/10.1007/978-3-319-39961-4_12CrossRefGoogle Scholar
  28. Busigny V, Planavsky NJ, Jézéquel D, Crowe S, Louvat P, Moureau J, Viollier E, Lyons TW (2014) Iron isotopes in an Archean ocean analogue. Geochim Cosmochim Acta 133:443–462.  https://doi.org/10.1016/j.gca.2014.03.004CrossRefGoogle Scholar
  29. Buss HL, Mathur R, White AF, Brantley SL (2010) Phosphorus and iron cycling in deep saprolite, Luquillo Mountains, Puerto Rico. Chem Geol 269(1–2):52–61.  https://doi.org/10.1016/j.chemgeo.2009.08.001CrossRefGoogle Scholar
  30. Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236(1–2):430–442.  https://doi.org/10.1016/j.epsl.2005.05.022CrossRefGoogle Scholar
  31. Canfield DE (1997) The geochemistry of river particulates from the continental USA: major elements. Geochim Cosmochim Acta 61(16):3349–3365CrossRefGoogle Scholar
  32. Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993a) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40CrossRefGoogle Scholar
  33. Canfield DE, Lyons TW, Raiswell R (1996) A model for iron deposition to euxinic Black Sea sediments. Am J Sci 296:818–834CrossRefGoogle Scholar
  34. Canfield DE, Thamdrup B, Hansen JW (1993b) The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883CrossRefGoogle Scholar
  35. Chadwick OA, Gavenda RT, Kelly EF, Ziegler K, Olson CG, Elliott WC, Hendricks DM (2003) The impact of climate on the biogeochemical functioning of volcanic soils. Chem Geol 202(3–4):195–223.  https://doi.org/10.1016/j.chemgeo.2002.09.001CrossRefGoogle Scholar
  36. Chapman JB, Weiss DJ, Shan Y, Lemburger M (2009) Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids. Geochim Cosmochim Acta 73(5):1312–1324.  https://doi.org/10.1016/j.gca.2008.11.037CrossRefGoogle Scholar
  37. Chen J-B, Busigny V, Gaillardet J, Louvat P, Wang Y-N (2014) Iron isotopes in the Seine River (France): Natural versus anthropogenic sources. Geochim Cosmochim Acta 128:128–143.  https://doi.org/10.1016/j.gca.2013.12.017CrossRefGoogle Scholar
  38. Chever F, Rouxel OJ, Croot PL, Ponzevera E, Wuttig K, Auro M (2015) Total dissolvable and dissolved iron isotopes in the water column of the Peru upwelling regime. Geochim Cosmochim Acta 162:66–82.  https://doi.org/10.1016/j.gca.2015.04.031CrossRefGoogle Scholar
  39. Conway TM, John SG (2014) Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511(7508):212–215.  https://doi.org/10.1038/nature13482CrossRefGoogle Scholar
  40. Conway TM, John SG, Lacan F (2016) Intercomparison of dissolved iron isotope profiles from reoccupation of three GEOTRACES stations in the Atlantic Ocean. Mar Chem 183:50–61.  https://doi.org/10.1016/j.marchem.2016.04.007CrossRefGoogle Scholar
  41. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses. 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.  https://doi.org/10.1002/3527602097
  42. Cosmidis J, Benzerara K, Morin G, Busigny V, Lebeau O, Jézéquel D, Noël V, Dublet G, Othmane G (2014) Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France). Geochim Cosmochim Acta 126:78–96.  https://doi.org/10.1016/j.gca.2013.10.037CrossRefGoogle Scholar
  43. Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria 1 1Associate editor: D E canfield. Geochimica et Cosmochimica Acta 68(6):1227–1242.  https://doi.org/10.1016/j.gca.2003.09.011CrossRefGoogle Scholar
  44. Cutter GA, Kluckhohn RS (1999) The cycling of particulate carbon, nitrogen, sulfur, and sulfur species (iron monosulfide, gregite, pyrite, and organic sulfur) in the water columns of Framvaren Fjord and the Black Sea. Mar Chem 67:149–160CrossRefGoogle Scholar
  45. Czaja AD, Johnson CM, Yamaguchi KE, Beard BL (2012) Comment on “Abiotic pyrite formation produces a large Fe isotope fractionation”. Science 335:538CrossRefGoogle Scholar
  46. Dale AW, Nickelsen L, Scholz F, Hensen C, Oschlies A, Wallmann K (2015) A revised global estimate of dissolved iron fluxes from marine sediments. Glob Biogeochem Cycles 29:691–707.  https://doi.org/10.1002/2014GB005017CrossRefGoogle Scholar
  47. Dauphas N, Rouxel O (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrom Rev 25(4):515–550.  https://doi.org/10.1002/mas.20078CrossRefGoogle Scholar
  48. Dideriksen K, Baker JA, Stipp SLS (2008) Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth Planet Sci Lett 269(1–2):280–290.  https://doi.org/10.1016/j.epsl.2008.02.022CrossRefGoogle Scholar
  49. Dideriksen K, Christiansen BC, Baker JA, Frandsen C, Balic-Zunic T, Tullborg E, Mørup S, Stipp SLS (2007) Fe-oxide fracture fillings as a palæo-redox indicator: structure, crystal form and Fe isotope composition. Chem Geol 244(1–2):330–343.  https://doi.org/10.1016/j.chemgeo.2007.06.027CrossRefGoogle Scholar
  50. Dideriksen K, Christiansen BC, Frandsen C, Balic-Zunic T, Mørup S, Stipp SLS (2010) Paleo-redox boundaries in fractured granite. Geochim Cosmochim Acta 74(10):2866–2880.  https://doi.org/10.1016/j.gca.2010.02.022CrossRefGoogle Scholar
  51. dos Santos Pinheiro GM, Poitrasson F, Sondag F, Cochonneau G, Vieira LC (2014) Contrasting iron isotopic compositions in river suspended particulate matter: the Negro and the Amazon annual river cycles. Earth Planet Sci Lett 394:168–178.  https://doi.org/10.1016/j.epsl.2014.03.006CrossRefGoogle Scholar
  52. dos Santos Pinheiro GM, Poitrasson F, Sondag F, Vieira LC, Pimentel MM (2013) Iron isotope composition of the suspended matter along depth and lateral profiles in the Amazon river and its tributaries. J S Am Earth Sci 44:35–44.  https://doi.org/10.1016/j.jsames.2012.08.001CrossRefGoogle Scholar
  53. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Jove Colon CF, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36 14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48CrossRefGoogle Scholar
  54. Eckert S, Brumsack H-J, Severmann S, Schnetger B, März C, Fröllje H (2013) Establishment of euxinic conditions in the Holocene Black Sea. Geology 41(4):431–434.  https://doi.org/10.1130/g33826.1CrossRefGoogle Scholar
  55. Edmonds HN, German CR (2004) Particle geochemistry in the Rainbow hydrothermal plume Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 68(4):759–772.  https://doi.org/10.1016/s0016-7037(03)00498-8CrossRefGoogle Scholar
  56. Ellwood MJ, Hutchins DA, Lohan MC, Milne A, Nasemann P, Nodder SD, Sander SG, Strzepek R, Wilhelm SW, Boyd PW (2015) Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proc Natl Acad Sci USA 112(1):E15–20.  https://doi.org/10.1073/pnas.1421576112CrossRefGoogle Scholar
  57. Elrod VA, Berelson WM, Coale KH, Johnson KS (2004) The flux of iron from continental shelf sediments: a missing source for global budgets. Geophys Res Lett 31(12):n/a-n/a.  https://doi.org/10.1029/2004gl020216CrossRefGoogle Scholar
  58. Emmanuel S, Erel Y, Matthews A, Teutsch N (2005) A preliminary mixing model for Fe isotopes in soils. Chem Geol 222(1–2):23–34.  https://doi.org/10.1016/j.chemgeo.2005.07.002CrossRefGoogle Scholar
  59. Escoube R, Rouxel OJ, Pokrovsky OS, Schroth A, Max Holmes R, Donard OFX (2015) Iron isotope systematics in Arctic rivers. CR Geosci 347(7–8):377–385.  https://doi.org/10.1016/j.crte.2015.04.005CrossRefGoogle Scholar
  60. Escoube R, Rouxel OJ, Sholkovitz E, Donard OFX (2009) Iron isotope systematics in estuaries: the case of North river, Massachusetts (USA). Geochim Cosmochim Acta 73(14):4045–4059.  https://doi.org/10.1016/j.gca.2009.04.026CrossRefGoogle Scholar
  61. Fantle MS, DePaolo DJ (2004) Iron isotopic fractionation during continental weathering. Earth Planet Sci Lett 228(3–4):547–562.  https://doi.org/10.1016/j.epsl.2004.10.013CrossRefGoogle Scholar
  62. Fehr MA, Andersson PS, Hålenius U, Gustafsson Ö, Mörth C-M (2010) Iron enrichments and Fe isotopic compositions of surface sediments from the Gotland Deep. Baltic Sea. Chemical Geology 277(3–4):310–322.  https://doi.org/10.1016/j.chemgeo.2010.08.014CrossRefGoogle Scholar
  63. Fehr MA, Andersson PS, Hålenius U, Mörth C-M (2008) Iron isotope variations in Holocene sediments of the Gotland Deep Baltic Sea. Geochimica et Cosmochimica Acta 72(3):807–826.  https://doi.org/10.1016/j.gca.2007.11.033CrossRefGoogle Scholar
  64. Fekiacova Z, Pichat S, Cornu S, Balesdent J (2013) Inferences from the vertical distribution of Fe isotopic compositions on pedogenetic processes in soils. Geoderma 209–210:110–118.  https://doi.org/10.1016/j.geoderma.2013.06.007CrossRefGoogle Scholar
  65. Field MP, Sherrell RM (2000) Dissolved and particulate Fe in a hydrothermal plume at 9 45′N, East Pacific Rise: slow Fe (II) oxidation kinetics in Pacific plumes. Geochim Cosmochim Acta 64(4):619–628CrossRefGoogle Scholar
  66. Fitzsimmons JN, Carrasco GG, Wu J, Roshan S, Hatta M, Measures CI, Conway TM, John SG, Boyle EA (2015) Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep Sea Res Part II: Top Stud Oceanogr 116:130–151.  https://doi.org/10.1016/j.dsr2.2014.11.014CrossRefGoogle Scholar
  67. Fitzsimmons JN, John SG, Marsay CM, Hoffman CL, Nicholas Sarah L, Toner BM, German CR, Sherrell RM (2017) Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nat Geosci 10(3):195–201.  https://doi.org/10.1038/ngeo2900CrossRefGoogle Scholar
  68. Fornari D, Von Damm K, Bryce J, Cowen J, Ferrini V, Fundis A, Lilley M, Luther G, Mullineaux L, Perfit M, Meana-Prado MF, Rubin K, Seyfried W, Shank T, Soule SA, Tolstoy M, White S (2012) The East Pacific Rise between 9°N and 10°N: twenty-five years of integrated, multidisciplinary oceanic spreading center studies. Oceanography 25(1):18–43.  https://doi.org/10.5670/oceanog.2012.02CrossRefGoogle Scholar
  69. Fossing H, Jørgensen BB (1990) Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater. Biogeochemistry 9:223–245CrossRefGoogle Scholar
  70. Fox LE (1988) The solubility of colloidal ferric hydroxide and its relevance to iron concentrations in river water. Geochim Cosmochim Acta 52:771–777CrossRefGoogle Scholar
  71. Fritz SJ (1988) A comparative study of gabbro and granite weathering. Chem Geol 68:275–290CrossRefGoogle Scholar
  72. Garnier J, Garnier JM, Vieira CL, Akerman A, Chmeleff J, Ruiz RI, Poitrasson F (2017) Iron isotope fingerprints of redox and biogeochemical cycling in the soil-water-rice plant system of a paddy field. Sci Total Environ 574:1622–1632.  https://doi.org/10.1016/j.scitotenv.2016.08.202CrossRefGoogle Scholar
  73. Gartman A, Findlay AJ, Luther GW (2014) Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem Geol 366:32–41.  https://doi.org/10.1016/j.chemgeo.2013.12.013CrossRefGoogle Scholar
  74. Gartman A, Luther GW (2014) Oxidation of synthesized sub-micron pyrite (FeS 2) in seawater. Geochim Cosmochim Acta 144:96–108.  https://doi.org/10.1016/j.gca.2014.08.022CrossRefGoogle Scholar
  75. German CR, Bennett SA, Connelly DP, Evans AJ, Murton BJ, Parson LM, Prien RD, Ramirez-Llodra E, Jakuba M, Shank TM, Yoerger DR, Baker ET, Walker SL, Nakamura K (2008) Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4–5°S. Earth Planet Sci Lett 273(3–4):332–344.  https://doi.org/10.1016/j.epsl.2008.06.048CrossRefGoogle Scholar
  76. German CR, Campbell AC, Edmond JM (1991) Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth Planet Sci Lett 107:101–114CrossRefGoogle Scholar
  77. German CR, Legendre LL, Sander SG, Niquil N, Luther GW, Bharati L, Han X, Le Bris N (2015) Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments. Earth Planet Sci Lett 419:143–153.  https://doi.org/10.1016/j.epsl.2015.03.012CrossRefGoogle Scholar
  78. German CR, Petersen S, Hannington MD (2016) Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chem Geol 420:114–126.  https://doi.org/10.1016/j.chemgeo.2015.11.006CrossRefGoogle Scholar
  79. German CR, Seyfried WEJ (2014) Treatise on geochemistry (2nd edn). Ref Modul Earth Syst Environ Sci 8:191–233.  https://doi.org/10.1016/b978-0-08-095975-7.00607-0CrossRefGoogle Scholar
  80. German CR, Thurnherr AM, Knoery J, Charlou JL, Jean-Baptiste P, Edmonds HN (2010) Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36°N MAR. Deep Sea Res Part I 57(4):518–527.  https://doi.org/10.1016/j.dsr.2009.12.011CrossRefGoogle Scholar
  81. German CR, Von Damm KL (2003) Treatise on geochemistry (Hydrothermal Processes), vol 6CrossRefGoogle Scholar
  82. Giggenbach WF (1990) Water and gas chemistry of Lake Nyos and its bearing on the eruptive process. J Volcanol Geoth Res 42:337–362CrossRefGoogle Scholar
  83. Gong Y, Xia Y, Huang F, Yu H (2016) Average iron isotopic compositions of the upper continental crust: constrained by loess from the Chinese Loess Plateau. Acta Geochimica 36(2):125–131.  https://doi.org/10.1007/s11631-016-0131-5CrossRefGoogle Scholar
  84. Gordon RM, Martin JH, Knauer GA (1982) Iron in north-east Pacific waters. Nature 299:611–612CrossRefGoogle Scholar
  85. Guelke M, von Blanckenburg F (2007) Fractionation of stable iron isotopes in higher plants. Environ Sci TechnolGoogle Scholar
  86. Guelke M, von Blanckenburg F, Schoenberg R, Staubwasser M, Stuetzel H (2010) Determining the stable Fe isotope signature of plant-available iron in soils. Chem Geol 277(3–4):269–280.  https://doi.org/10.1016/j.chemgeo.2010.08.010CrossRefGoogle Scholar
  87. Guilbaud R, Butler IB, Ellam RM (2011a) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332(6037):1548–1551.  https://doi.org/10.1126/science.1202924CrossRefGoogle Scholar
  88. Guilbaud R, Butler IB, Ellam RM, Rickard D (2010) Fe isotope exchange between Fe(II)aq and nanoparticulate mackinawite (FeSm) during nanoparticle growth. Earth Planet Sci Lett 300(1–2):174–183.  https://doi.org/10.1016/j.epsl.2010.10.004CrossRefGoogle Scholar
  89. Guilbaud R, Butler IB, Ellam RM, Rickard D, Oldroyd A (2011b) Experimental determination of the equilibrium Fe isotope fractionation between and FeSm (mackinawite) at 25 and 2 °C. Geochim Cosmochim Acta 75(10):2721–2734.  https://doi.org/10.1016/j.gca.2011.02.023CrossRefGoogle Scholar
  90. Guo H, Liu C, Lu H, Wanty RB, Wang J, Zhou Y (2013) Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochim Cosmochim Acta 112:130–145.  https://doi.org/10.1016/j.gca.2013.02.031CrossRefGoogle Scholar
  91. Habicht KS, Gade M, Thamdrup B, Berg P, Canfield DE (2002) Calibration of sulfate levels in the Archean Ocean. Science 298CrossRefGoogle Scholar
  92. Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between Aqeuous Fe(II) and Goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107CrossRefGoogle Scholar
  93. Hatta M, Measures CI, Wu J, Roshan S, Fitzsimmons JN, Sedwick P, Morton P (2015) An overview of dissolved Fe and Mn distributions during the 2010–2011 US GEOTRACES north Atlantic cruises: GEOTRACES GA03. Deep Sea Res Part II 116:117–129.  https://doi.org/10.1016/j.dsr2.2014.07.005CrossRefGoogle Scholar
  94. Hayes CT, Fitzsimmons JN, Boyle EA, McGee D, Anderson RF, Weisend R, Morton PL (2015) Thorium isotopes tracing the iron cycle at the Hawaii Ocean time-series station ALOHA. Geochim Cosmochim Acta 169:1–16.  https://doi.org/10.1016/j.gca.2015.07.019CrossRefGoogle Scholar
  95. Heller MI, Lam PJ, Moffett JW, Till CP, Lee J-M, Toner BM, Marcus MA (2017) Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation. Geochim Cosmochim Acta 211:174–193.  https://doi.org/10.1016/j.gca.2017.05.019CrossRefGoogle Scholar
  96. Henkel S, Kasten S, Poulton SW, Staubwasser M (2016) Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments. Chem Geol 421:93–102.  https://doi.org/10.1016/j.chemgeo.2015.12.003CrossRefGoogle Scholar
  97. Ho P, Lee J-M, Heller MI, Lam PJ, Shiller AM (2018) The distribution of dissolved and particulate Mo and V along the US GEOTRACES East Pacific Zonal Transect (GP16): the roles of oxides and biogenic particles in their distributions in the oxygen deficient zone and the hydrothermal plume. Mar Chem 201:242–255.  https://doi.org/10.1016/j.marchem.2017.12.003CrossRefGoogle Scholar
  98. Hoffman CL, Nicholas SL, Ohnemus DC, Fitzsimmons JN, Sherrell RM, German CR, Heller MI, Lee J-m, Lam PJ, Toner BM (2018) Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15°S. Mar Chem 201:183–197.  https://doi.org/10.1016/j.marchem.2018.01.011CrossRefGoogle Scholar
  99. Holmes TM, Chase Z, van der Merwe P, Townsend AT, Bowie AR (2017) Detection, dispersal and biogeochemical contribution of hydrothermal iron in the ocean. Mar Freshw Res 68(12).  https://doi.org/10.1071/mf16335CrossRefGoogle Scholar
  100. Homoky WB, Hembury DJ, Hepburn LE, Mills RA, Statham PJ, Fones GR, Palmer MR (2011) Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids. Geochim Cosmochim Acta 75(17):5032–5048.  https://doi.org/10.1016/j.gca.2011.06.019CrossRefGoogle Scholar
  101. Homoky WB, John SG, Conway TM, Mills RA (2013) Distinct iron isotopic signatures and supply from marine sediment dissolution. Nat Commun 4:2143.  https://doi.org/10.1038/ncomms3143CrossRefGoogle Scholar
  102. Homoky WB, Severmann S, Mills RA, Statham PJ, Fones GR (2009) Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments. Geology 37(8):751–754.  https://doi.org/10.1130/g25731a.1CrossRefGoogle Scholar
  103. Homoky WB, Weber T, Berelson WM, Conway TM, Henderson GM, van Hulten M, Jeandel C, Severmann S, Tagliabue A (2016) Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review. Philos Trans A Math Phys Eng Sci 374 (2081).  https://doi.org/10.1098/rsta.2016.0246CrossRefGoogle Scholar
  104. Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8:1.  https://doi.org/10.1186/1467-4866-8-1CrossRefGoogle Scholar
  105. Hunter KA, Boyd PW (2007) Iron-binding ligands and their role in the ocean biogeochemistry of iron. Environ Chem 4(4).  https://doi.org/10.1071/en07012CrossRefGoogle Scholar
  106. Hurst MP, Bruland KW (2007) An investigation into the exchange of iron and zinc between soluble, colloidal, and particulate size-fractions in shelf waters using low-abundance isotopes as tracers in shipboard incubation experiments. Mar Chem 103(3–4):211–226.  https://doi.org/10.1016/j.marchem.2006.07.001CrossRefGoogle Scholar
  107. Ilina SM, Poitrasson F, Lapitskiy SA, Alekhin YV, Viers J, Pokrovsky OS (2013) Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters. Geochim Cosmochim Acta 101:96–111.  https://doi.org/10.1016/j.gca.2012.10.023CrossRefGoogle Scholar
  108. Ingri J, Malinovsky D, Rodushkin I, Baxter DC, Widerlund A, Andersson P, Gustafsson Ö, Forsling W, Öhlander B (2006) Iron isotope fractionation in river colloidal matter. Earth Planet Sci Lett 245(3–4):792–798.  https://doi.org/10.1016/j.epsl.2006.03.031CrossRefGoogle Scholar
  109. Ito A, Otake T, Shin K-C, Ariffin KS, Yeoh F-Y, Sato T (2017) Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Appl Geochem 82:89–101.  https://doi.org/10.1016/j.apgeochem.2017.05.007CrossRefGoogle Scholar
  110. Jean-Baptiste P, Fourré E, Charlou J-L, German CR, Radford-Knoery J (2004) Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14′N). Earth Planet Sci Lett 221(1–4):325–335.  https://doi.org/10.1016/s0012-821x(04)00094-9CrossRefGoogle Scholar
  111. Jenkins WJ, Lott DE, German CR, Cahill KL, Goudreau J, Longworth B (2018) The deep distributions of helium isotopes, radiocarbon, and noble gases along the US GEOTRACES East Pacific Zonal Transect (GP16). Mar Chem 201:167–182.  https://doi.org/10.1016/j.marchem.2017.03.009CrossRefGoogle Scholar
  112. Jenkins WJ, Lott DE, Longworth BE, Curtice JM, Cahill KL (2015a) The distributions of helium isotopes and tritium along the US GEOTRACES North Atlantic sections (GEOTRACES GAO3). Deep Sea Res Part II 116:21–28.  https://doi.org/10.1016/j.dsr2.2014.11.017CrossRefGoogle Scholar
  113. Jenkins WJ, Smethie WM, Boyle EA, Cutter GA (2015b) Water mass analysis for the US GEOTRACES (GA03) North Atlantic sections. Deep Sea Res Part II 116:6–20.  https://doi.org/10.1016/j.dsr2.2014.11.018CrossRefGoogle Scholar
  114. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, Cao JJ, Boyd PW, Duce RA, Hunter KA, Kawahata H, Kubilay N, laRoche J, Liss PS, Mahowald N, Prospero JM, Ridgwell AJ, Tegen I, Torres R (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308Google Scholar
  115. John SG, Helgoe J, Townsend E, Weber T, DeVries T, Tagliabue A, Moore K, Lam P, Marsay CM, Till C (2018) Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific. Mar Chem 201:66–76.  https://doi.org/10.1016/j.marchem.2017.06.003CrossRefGoogle Scholar
  116. John SG, Mendez J, Moffett J, Adkins J (2012) The flux of iron and iron isotopes from San Pedro Basin sediments. Geochim Cosmochim Acta 93:14–29.  https://doi.org/10.1016/j.gca.2012.06.003CrossRefGoogle Scholar
  117. Johnson CM, Roden EE, Welch SA, Beard BL (2005) Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 69(4):963–993.  https://doi.org/10.1016/j.gca.2004.06.043CrossRefGoogle Scholar
  118. Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fractionation between Fe(III) and Fe(II) in aqeuous solutions. Earth Planet Sci Lett 195:141–153CrossRefGoogle Scholar
  119. Johnson KS, Chavez FP, Friedrich GE (1999) Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398CrossRefGoogle Scholar
  120. Johnson KS, Gordon MR, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161CrossRefGoogle Scholar
  121. Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  122. Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  123. Kiczka M, Wiederhold JG, Frommer J, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during proton- and ligand-promoted dissolution of primary phyllosilicates. Geochim Cosmochim Acta 74(11):3112–3128.  https://doi.org/10.1016/j.gca.2010.02.018CrossRefGoogle Scholar
  124. Klar JK, Homoky WB, Statham PJ, Birchill AJ, Harris EL, Woodward EMS, Silburn B, Cooper MJ, James RH, Connelly DP, Chever F, Lichtschlag A, Graves C (2017a) Stability of dissolved and soluble Fe(II) in shelf sediment pore waters and release to an oxic water column. Biogeochemistry 135(1–2):49–67.  https://doi.org/10.1007/s10533-017-0309-xCrossRefGoogle Scholar
  125. Klar JK, James RH, Gibbs D, Lough A, Parkinson I, Milton JA, Hawkes JA, Connelly DP (2017b) Isotopic signature of dissolved iron delivered to the Southern Ocean from hydrothermal vents in the East Scotia Sea. Geology 45(4):351–354.  https://doi.org/10.1130/g38432.1CrossRefGoogle Scholar
  126. Klevenz V, Bach W, Schmidt K, Hentscher M, Koschinsky A, Petersen S (2011) Geochemistry of vent fluid particles formed during initial hydrothermal fluid-seawater mixing along the Mid-Atlantic Ridge. Geochem Geophys Geosyst 12(10):n/a-n/a.  https://doi.org/10.1029/2011gc003704CrossRefGoogle Scholar
  127. Konovalov SK, Murray JW, Luther GW, Tebo BM (2006) Processes controlling the redox budget for the oxic/anoxic water column of the Black Sea. Deep Sea Res Part II 53(17–19):1817–1841.  https://doi.org/10.1016/j.dsr2.2006.03.013CrossRefGoogle Scholar
  128. Kurisu M, Takahashi Y, Uematsu M (2016) Very low isotope ratio of iron in fine aerosol related to its contribution to the surface ocean. J Geophys Res: Atmos 121(11).  https://doi.org/10.1002/2016jd024957Google Scholar
  129. Labatut M, Lacan F, Pradoux C, Chmeleff J, Radic A, Murray JW, Poitrasson F, Johansen AM, Thil F (2014) Iron sources and dissolved-particulate interactions in the seawater of the Western Equatorial Pacific, iron isotopes perspectives. Glob Biogeochem Cycles 28:1044–1065.  https://doi.org/10.1002/2014GB004928CrossRefGoogle Scholar
  130. Lam PJ, Lee J-M, Heller MI, Mehic S, Xiang Y, Bates NR (2018) Size-fractionated distributions of suspended particle concentration and major phase composition from the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar Chem 201:90–107.  https://doi.org/10.1016/j.marchem.2017.08.013CrossRefGoogle Scholar
  131. Lam PJ, Ohnemus DC, Auro ME (2015) Size-fractionated major particle composition and concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep Sea Res Part II 116:303–320.  https://doi.org/10.1016/j.dsr2.2014.11.020CrossRefGoogle Scholar
  132. Lee J-M, Heller MI, Lam PJ (2018) Size distribution of particulate trace elements in the US GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar Chem 201:108–123.  https://doi.org/10.1016/j.marchem.2017.09.006CrossRefGoogle Scholar
  133. Lenstra WK, Hermans M, Séguret MJM, Witbaard R, Behrends T, Dijkstra N, van Helmond NAGM, Kraal P, Laan P, Rijkenberg MJA, Severmann S, Teacǎ A, Slomp CP (2019) The shelf-to-basin iron shuttle in the Black Sea revisited. Chem Geol 511:314–341.  https://doi.org/10.1016/j.chemgeo.2018.10.024CrossRefGoogle Scholar
  134. Leslie BW, Hammond DE, Berelson WM, Lund SP (1990) Diagenesis in anoxic sediments from the California continental borderland and its influence on iron, sulfur, and magnetite behavior. J Geophys Res 95(B4).  https://doi.org/10.1029/jb095ib04p04453CrossRefGoogle Scholar
  135. Lewis BL, Landing WM (1991) The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res Part A Oceanogr Res Pap 38:S773–S803.  https://doi.org/10.1016/s0198-0149(10)80009-3CrossRefGoogle Scholar
  136. Li M, He Y-S, Kang J-T, Yang X-Y, He Z-W, Yu H-M, Huang F (2017) Why was iron lost without significant isotope fractionation during the lateritic process in tropical environments? Geoderma 290:1–9.  https://doi.org/10.1016/j.geoderma.2016.12.003CrossRefGoogle Scholar
  137. Lin Z, Sun X, Lu Y, Strauss H, Xu L, Gong J, Teichert BMA, Lu R, Lu H, Sun W, Peckmann J (2017) The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chem Geol 449:15–29.  https://doi.org/10.1016/j.chemgeo.2016.11.032CrossRefGoogle Scholar
  138. Liu K, Wu L, Couture R-M, Li W, Van Cappellen P (2015) Iron isotope fractionation in sediments of an oligotrophic freshwater lake. Earth Planet Sci Lett 423:164–172.  https://doi.org/10.1016/j.epsl.2015.05.010CrossRefGoogle Scholar
  139. Liu S-A, Teng F-Z, Li S, Wei G-J, Ma J-L, Li D (2014) Copper and iron isotope fractionation during weathering and pedogenesis: insights from saprolite profiles. Geochim Cosmochim Acta 146:59–75.  https://doi.org/10.1016/j.gca.2014.09.040CrossRefGoogle Scholar
  140. Lough AJM, Klar JK, Homoky WB, Comer-Warner SA, Milton JA, Connelly DP, James RH, Mills RA (2017) Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes. Geochim Cosmochim Acta 202:1–20.  https://doi.org/10.1016/j.gca.2016.12.022CrossRefGoogle Scholar
  141. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) Reduction. In. Advances in microbial physiology, pp 219–286.  https://doi.org/10.1016/s0065-2911(04)49005-5Google Scholar
  142. Lowell RP, Farough A, Hoover J, Cummings K (2013) Characteristics of magma-driven hydrothermal systems at oceanic spreading centers. Geochem Geophys Geosyst 14(6):1756–1770.  https://doi.org/10.1002/ggge.20109CrossRefGoogle Scholar
  143. Luther GW (1991) Pyrite synthesis via polysulfide compounds. Geochim Cosmochim Acta 55:2839–2849CrossRefGoogle Scholar
  144. Luther GW, Church TM, Powell D (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea. Deep Sea Res Part A Oceanogr Res Pap 38:S1121–S1137.  https://doi.org/10.1016/s0198-0149(10)80027-5CrossRefGoogle Scholar
  145. Lyons TW, Severmann S (2006) A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim Cosmochim Acta 70(23):5698–5722.  https://doi.org/10.1016/j.gca.2006.08.021CrossRefGoogle Scholar
  146. Majestic BJ, Anbar AD, Herckes P (2009) Stable isotopes as a tool to apportion atmospheric iron. Environ Sci Technol 43:4327–4333CrossRefGoogle Scholar
  147. Mansfeldt T, Schuth S, Häusler W, Wagner FE, Kaufhold S, Overesch M (2011) Iron oxide mineralogy and stable iron isotope composition in a Gleysol with petrogleyic properties. J Soils Sediments 12(1):97–114.  https://doi.org/10.1007/s11368-011-0402-zCrossRefGoogle Scholar
  148. Marsay CM, Lam PJ, Heller MI, Lee J-M, John SG (2018) Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect. Mar Chem 201:198–211.  https://doi.org/10.1016/j.marchem.2017.07.003CrossRefGoogle Scholar
  149. Martin JH (1990) Glacial-Interglacial CO2 Change: the iron hypothesis. Paleoceanography 5(1):1–13CrossRefGoogle Scholar
  150. Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331:341–343CrossRefGoogle Scholar
  151. Martin JH, Gordon RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep Sea Res 35(2):177–196CrossRefGoogle Scholar
  152. McManus J, Berelson WM, Coale KH, Johnson KS, Tammy E (1997) Phosphorus regeneration in continental margin sediments. Geochim Cosmochim Acta 61(14):2891–2907CrossRefGoogle Scholar
  153. Mead C, Herckes P, Majestic BJ, Anbar AD (2013) Source apportionment of aerosol iron in the marine environment using iron isotope analysis. Geophys Res Lett 40(21):5722–5727.  https://doi.org/10.1002/2013gl057713CrossRefGoogle Scholar
  154. Michard G, Viollier E, Jézéquel D, Sarazin G (1994) Geochemical study of a crater lake: Pavin Lake, France—Identification, location and quantification of the chemical reactions in the lake. Chem Geol 115:103–115CrossRefGoogle Scholar
  155. Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “Ocean”. Science 324Google Scholar
  156. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801CrossRefGoogle Scholar
  157. Milliman JD, Syvitski JPM (1992) Geomorphic/Tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J Geol 100:525–544CrossRefGoogle Scholar
  158. Milne A, Schlosser C, Wake BD, Achterberg EP, Chance R, Baker AR, Forryan A, Lohan MC (2017) Particulate phases are key in controlling dissolved iron concentrations in the (sub)tropical North Atlantic. Geophys Res Lett 44:2377–2387CrossRefGoogle Scholar
  159. Moffett JW, German CR (2018) The US GEOTRACES Eastern Tropical Pacific transect (GP16). Mar Chem 201:1–5.  https://doi.org/10.1016/j.marchem.2017.12.001CrossRefGoogle Scholar
  160. Moon S, Chamberlain CP, Hilley GE (2014) New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim Cosmochim Acta 134:257–274.  https://doi.org/10.1016/j.gca.2014.02.033CrossRefGoogle Scholar
  161. Moore JK, Braucher O (2008) Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5:631–656CrossRefGoogle Scholar
  162. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125CrossRefGoogle Scholar
  163. Morgan JLL, Wasylenki LE, Nuester J, Anbar AD (2010) Fe isotope fractionation during equilibration of Fe-Organic complexes. Environ Sci Technol 44:6095–6101CrossRefGoogle Scholar
  164. Morse J, Millero F, Cornwell J, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci Rev 24:1-42.  https://doi.org/10.1016/0012-8252(87)90046-8CrossRefGoogle Scholar
  165. Muramoto JA, Honjo S, Fry B, Hay BJ, Howarth RW, Cisne JL (1991) Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes. Deep Sea Res Part A Oceanogr Res Pap 38:S1151–S1187.  https://doi.org/10.1016/s0198-0149(10)80029-9CrossRefGoogle Scholar
  166. Murray JW, Jannasch HW, Honjo S, Anderson RF, Reeburgh WS, Top Z, Friederich GE, Codispoti LA, Izdar E (1989) Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 338CrossRefGoogle Scholar
  167. Nasemann P, Gault-Ringold M, Stirling CH, Koschinsky A, Sander SG (2018) Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: a case study from the Vanuatu back-arc. Chem Geol 476:70–84.  https://doi.org/10.1016/j.chemgeo.2017.11.005CrossRefGoogle Scholar
  168. Noffke A, Hensen C, Sommer S, Scholz F, Bohlen L, Mosch T, Graco M, Wallmann K (2012) Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone. Limnol Oceanogr 57(3):851–867.  https://doi.org/10.4319/lo.2012.57.3.0851CrossRefGoogle Scholar
  169. Ohnemus DC, Lam PJ (2015) Cycling of lithogenic marine particles in the US GEOTRACES North Atlantic transect. Deep Sea Res Part II 116:283–302.  https://doi.org/10.1016/j.dsr2.2014.11.019CrossRefGoogle Scholar
  170. Peng X, Guo Z, Chen S, Sun Z, Xu H, Ta K, Zhang J, Zhang L, Li J, Du M (2017) Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochim Cosmochim Acta 205:1–13.  https://doi.org/10.1016/j.gca.2017.02.010CrossRefGoogle Scholar
  171. Peters BD, Jenkins WJ, Swift JH, German CR, Moffett JW, Cutter GA, Brzezinski MA, Casciotti KL (2018) Water mass analysis of the 2013 US GEOTRACES eastern Pacific zonal transect (GP16). Mar Chem 201:6–19.  https://doi.org/10.1016/j.marchem.2017.09.007CrossRefGoogle Scholar
  172. Poitrasson F, Cruz Vieira L, Seyler P, dos Santos Márcia, Pinheiro G, Santos Mulholland D, Bonnet M-P, Martinez J-M, Alcantara Lima B, Resende Boaventura G, Chmeleff J, Dantas EL, Guyot J-L, Mancini L, Martins Pimentel M, Ventura Santos R, Sondag F, Vauchel P (2014) Iron isotope composition of the bulk waters and sediments from the Amazon river Basin. Chem Geol 377:1–11.  https://doi.org/10.1016/j.chemgeo.2014.03.019CrossRefGoogle Scholar
  173. Poitrasson F, Viers J, Martin F, Braun J-J (2008) Limited iron isotope variations in recent lateritic soils from Nsimi, Cameroon: implications for the global Fe geochemical cycle. Chem Geol 253(1–2):54–63.  https://doi.org/10.1016/j.chemgeo.2008.04.011CrossRefGoogle Scholar
  174. Poulton SW, Raiswell R (2005) Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem Geol 218(3–4):203–221.  https://doi.org/10.1016/j.chemgeo.2005.01.007CrossRefGoogle Scholar
  175. Proemse BC, Murray AE, Schallenberg C, McKiernan B, Glazer BT, Young SA, Ostrom NE, Bowie AR, Wieser ME, Kenig F, Doran PT, Edwards R (2017) Iron cycling in the anoxic cryo-ecosystem of Antarctic Lake Vida. Biogeochemistry 134(1–2):17–27.  https://doi.org/10.1007/s10533-017-0346-5CrossRefGoogle Scholar
  176. Pyzik AJ, Sommer SE (1981) Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochim Cosmochim Acta 45:687–698CrossRefGoogle Scholar
  177. Radic A, Lacan F, Murray JW (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle. Earth Planet Sci Lett 306(1–2):1–10.  https://doi.org/10.1016/j.epsl.2011.03.015CrossRefGoogle Scholar
  178. Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724CrossRefGoogle Scholar
  179. Rauschenberg S, Twining BS (2015) Evaluation of approaches to estimate biogenic particulate trace metals in the ocean. Mar Chem 171:67–77.  https://doi.org/10.1016/j.marchem.2015.01.004CrossRefGoogle Scholar
  180. Resing JA, Sedwick PN, German CR, Jenkins WJ, Moffett JW, Sohst BM, Tagliabue A (2015) Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523(7559):200–203.  https://doi.org/10.1038/nature14577CrossRefGoogle Scholar
  181. Revels BN, Ohnemus DC, Lam PJ, Conway TM, John SG (2015a) The isotopic signature and distribution of particulate iron in the North Atlantic Ocean. Deep Sea Res Part II 116:321–331.  https://doi.org/10.1016/j.dsr2.2014.12.004CrossRefGoogle Scholar
  182. Revels BN, Zhang R, Adkins JF, John SG (2015b) Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes. Geochim Cosmochim Acta 166:92–104.  https://doi.org/10.1016/j.gca.2015.05.034CrossRefGoogle Scholar
  183. Rickard DT (1974) Kinetics and mechanism of the sulfidation of geothite. Am J Sci 274:941–952CrossRefGoogle Scholar
  184. Rickard D, Schoonen M, Luther G (1995) Chemistry of iron sulfides in sedimentary environments. Geochem Trans Sediment Sulfur 612.  https://doi.org/10.1021/bk-1995-0612.ch009Google Scholar
  185. Rolison JM, Stirling CH, Middag R, Gault-Ringold M, George E, Rijkenberg MJA (2018) Iron isotope fractionation during pyrite formation in a sulfidic Precambrian ocean analogue. Earth Planet Sci Lett 488:1–13.  https://doi.org/10.1016/j.epsl.2018.02.006CrossRefGoogle Scholar
  186. Rouxel O, Shanksiii W, Bach W, Edwards K (2008a) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem Geol 252(3–4):214–227.  https://doi.org/10.1016/j.chemgeo.2008.03.009CrossRefGoogle Scholar
  187. Rouxel O, Sholkovitz E, Charette M, Edwards KJ (2008b) Iron isotope fractionation in subterranean estuaries. Geochim Cosmochim Acta 72(14):3413–3430.  https://doi.org/10.1016/j.gca.2008.05.001CrossRefGoogle Scholar
  188. Rouxel O, Toner B, Germain Y, Glazer B (2018) Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochim Cosmochim Acta 220:449–482.  https://doi.org/10.1016/j.gca.2017.09.050CrossRefGoogle Scholar
  189. Rouxel O, Toner BM, Manganini SJ, German CR (2016) Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N. Chem Geol 441:212–234.  https://doi.org/10.1016/j.chemgeo.2016.08.027CrossRefGoogle Scholar
  190. Rouxel OJ, Auro M (2010) Iron isotope variations in coastal seawater determined by multicollector ICP-MS. Geostand Geoanal Res 34:135–144CrossRefGoogle Scholar
  191. Rouxel OJ, Bekker A, Edwards KJ (2005) Iron isotope constraints on the archean and paleoproterozoic ocean redox state. Science 307:1088–1091CrossRefGoogle Scholar
  192. Roy M, Rouxel O, Martin JB, Cable JE (2012) Iron isotope fractionation in a sulfide-bearing subterranean estuary and its potential influence on oceanic Fe isotope flux. Chem Geol 300–301:133–142.  https://doi.org/10.1016/j.chemgeo.2012.01.022CrossRefGoogle Scholar
  193. Rudnicki MD, Elderfield H (1993) A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26°N, Mid-Atlantic Ridge. Geochim Cosmochim Acta 57:2939–2957CrossRefGoogle Scholar
  194. Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determine by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50:117–138CrossRefGoogle Scholar
  195. Saito MA, Noble AE, Tagliabue A, Goepfert TJ, Lamborg CH, Jenkins WJ (2013) Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source. Nat Geosci 6(9):775–779.  https://doi.org/10.1038/ngeo1893CrossRefGoogle Scholar
  196. Sander SG, Koschinsky A (2011) Metal flux from hydrothermal vents increased by organic complexation. Nat Geosci 4(3):145–150.  https://doi.org/10.1038/ngeo1088CrossRefGoogle Scholar
  197. Schettler G, Schwab MJ, Stebich M (2007) A 700-year record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chem Geol 240(1–2):11–35.  https://doi.org/10.1016/j.chemgeo.2007.01.003CrossRefGoogle Scholar
  198. Scholz F, Hensen C, Noffke A, Rohde A, Liebetrau V, Wallmann K (2011) Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—response to ENSO-related oxygen fluctuations in the water column. Geochim Cosmochim Acta 75(22):7257–7276.  https://doi.org/10.1016/j.gca.2011.08.007CrossRefGoogle Scholar
  199. Scholz F, Löscher CR, Fiskal A, Sommer S, Hensen C, Lomnitz U, Wuttig K, Göttlicher J, Kossel E, Steininger R, Canfield DE (2016) Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions. Earth Planet Sci Lett 454:272–281.  https://doi.org/10.1016/j.epsl.2016.09.025CrossRefGoogle Scholar
  200. Scholz F, Severmann S, McManus J, Hensen C (2014a) Beyond the Black Sea paradigm: The sedimentary fingerprint of an open-marine iron shuttle. Geochim Cosmochim Acta 127:368–380.  https://doi.org/10.1016/j.gca.2013.11.041CrossRefGoogle Scholar
  201. Scholz F, Severmann S, McManus J, Noffke A, Lomnitz U, Hensen C (2014b) On the isotope composition of reactive iron in marine sediments: redox shuttle versus early diagenesis. Chem Geol 389:48–59.  https://doi.org/10.1016/j.chemgeo.2014.09.009CrossRefGoogle Scholar
  202. Schoonen M (2004) Mechanisms of sedimentary pyrite formation.  https://doi.org/10.1130/0-8137-2379-5.117Google Scholar
  203. Schroth AW, Crusius J, Chever F, Bostick BC, Rouxel OJ (2011) Glacial influence on the geochemistry of riverine iron fluxes to the Gulf of Alaska and effects of deglaciation. Geophys Res Lett 38(16):n/a-n/a.  https://doi.org/10.1029/2011gl048367CrossRefGoogle Scholar
  204. Schuessler JA, Kämpf H, Koch U, Alawi M (2016) Earthquake impact on iron isotope signatures recorded in mineral spring water. J Geophys Res: Solid Earth 121(12):8548–8568.  https://doi.org/10.1002/2016jb013408CrossRefGoogle Scholar
  205. Schuth S, Hurraß J, Münker C, Mansfeldt T (2015) Redox-dependent fractionation of iron isotopes in suspensions of a groundwater-influenced soil. Chem Geol 392:74–86.  https://doi.org/10.1016/j.chemgeo.2014.11.007CrossRefGoogle Scholar
  206. Sedwick PN, Sohst BM, Ussher SJ, Bowie AR (2015) A zonal picture of the water column distribution of dissolved iron(II) during the US. GEOTRACES North Atlantic transect cruise (GEOTRACES GA03). Deep Sea Res Part II 116:166–175.  https://doi.org/10.1016/j.dsr2.2014.11.004CrossRefGoogle Scholar
  207. Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN, Chiba H, Green DRH (2004) The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N. Earth Planet Sci Lett 225(1–2):63–76.  https://doi.org/10.1016/j.epsl.2004.06.001CrossRefGoogle Scholar
  208. Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70(8):2006–2022.  https://doi.org/10.1016/j.gca.2006.01.007CrossRefGoogle Scholar
  209. Severmann S, Lyons TW, Anbar A, McManus J, Gordon G (2008) Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36(6).  https://doi.org/10.1130/g24670a.1CrossRefGoogle Scholar
  210. Severmann S, McManus J, Berelson WM, Hammond DE (2010) The continental shelf benthic iron flux and its isotope composition. Geochim Cosmochim Acta 74(14):3984–4004.  https://doi.org/10.1016/j.gca.2010.04.022CrossRefGoogle Scholar
  211. Shelley RU, Morton PL, Landing WM (2015) Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res Part II 116:262–272.  https://doi.org/10.1016/j.dsr2.2014.12.005CrossRefGoogle Scholar
  212. Sherrell RM, Boyle EA (1992) The trace metal composition of suspended particles in the oceanic water column near Bermuda. Earth Planet Sci Lett 111:155–174CrossRefGoogle Scholar
  213. Sivan O, Adler M, Pearson A, Gelman F, Bar-Or I, John SG, Eckert W (2011) Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 56(4):1536–1544.  https://doi.org/10.4319/lo.2011.56.4.1536CrossRefGoogle Scholar
  214. Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66(17):2995–3015CrossRefGoogle Scholar
  215. Song L, Liu C-Q, Wang Z-L, Zhu X, Teng Y, Liang L, Tang S, Li J (2011) Iron isotope fractionation during biogeochemical cycle: information from suspended particulate matter (SPM) in Aha Lake and its tributaries, Guizhou China. Chemical Geology 280(1–2):170–179.  https://doi.org/10.1016/j.chemgeo.2010.11.006CrossRefGoogle Scholar
  216. Sparks DL (2003) Enviromental soil chemistry. Academic Press.  https://doi.org/10.1016/b978-0-12-656446-4.x5000-2
  217. Statham P, German C, Connelly D (2005) Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth Planet Sci Lett 236(3–4):588–596.  https://doi.org/10.1016/j.epsl.2005.03.008CrossRefGoogle Scholar
  218. Staubwasser M, Schoenberg R, von Blanckenburg F, Krüger S, Pohl C (2013) Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea. Biogeosciences 10(1):233–245.  https://doi.org/10.5194/bg-10-233-2013CrossRefGoogle Scholar
  219. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 1458–1460 (1996)CrossRefGoogle Scholar
  220. Stucki JW, Goodman BA, Schwertmann U (1988) Iron in soils and clay minerals. Nato science series C, vol 217, 1st edn. Springer, Netherlands.  https://doi.org/10.1007/978-94-009-4007-9Google Scholar
  221. Syverson DD, Borrok DM, Seyfried WE (2013) Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim Cosmochim Acta 122:170–183.  https://doi.org/10.1016/j.gca.2013.08.027CrossRefGoogle Scholar
  222. Tang D, Morel FMM (2006) Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Mar Chem 98(1):18–30.  https://doi.org/10.1016/j.marchem.2005.06.003CrossRefGoogle Scholar
  223. Taylor P, Rummery TE, Owen DG (1979) Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160 °C. J Inorg Nucl Chem 41:1683–1687CrossRefGoogle Scholar
  224. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific PublicationsGoogle Scholar
  225. Teutsch N, Schmid M, Müller B, Halliday AN, Bürgmann H, Wehrli B (2009) Large iron isotope fractionation at the oxic–anoxic boundary in Lake Nyos. Earth Planet Sci Lett 285(1–2):52–60.  https://doi.org/10.1016/j.epsl.2009.05.044CrossRefGoogle Scholar
  226. Teutsch N, von Gunten U, Porcelli D, Cirpka OA, Halliday AN (2005) Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim Cosmochim Acta 69(17):4175–4185.  https://doi.org/10.1016/j.gca.2005.04.007CrossRefGoogle Scholar
  227. Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay Denmark. Geochimica et Cosmochimica Acta 58(23):5115–5129CrossRefGoogle Scholar
  228. Thompson A, Chadwick OA, Rancourt DG, Chorover J (2006) Iron-oxide crystallinity increases during soil redox oscillations. Geochim Cosmochim Acta 70(7):1710–1727.  https://doi.org/10.1016/j.gca.2005.12.005CrossRefGoogle Scholar
  229. Thompson A, Ruiz J, Chadwick OA, Titus M, Chorover J (2007) Rayleigh fractionation of iron isotopes during pedogenesis along a climate sequence of Hawaiian basalt. Chem Geol 238(1–2):72–83.  https://doi.org/10.1016/j.chemgeo.2006.11.005CrossRefGoogle Scholar
  230. Tiodjio RE, Sakatoku A, Nakamura A, Tanaka D, Fantong WY, Tchakam KB, Tanyileke G, Ohba T, Hell VJ, Kusakabe M, Nakamura S, Ueda A (2014) Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa). Sci Rep 4:6151.  https://doi.org/10.1038/srep06151CrossRefGoogle Scholar
  231. Toner BM, Fakra SC, Manganini SJ, Santelli CM, Marcus MA, Moffett JW, Rouxel O, German CR, Edwards KJ (2009) Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nat Geosci 2(3):197–201.  https://doi.org/10.1038/ngeo433CrossRefGoogle Scholar
  232. Tovar-Sanchez A, Sañudo-Wilhelmy SA, Garcia-Vargas M, Weaver RS, Popels LC, Hutchins DA (2003) A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Mar Chem 82(1–2):91–99.  https://doi.org/10.1016/s0304-4203(03)00054-9CrossRefGoogle Scholar
  233. Weil RR, Brady NC (2017) The nature and properties of soils, 15th edn. PearsonGoogle Scholar
  234. Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67(22):4231–4250.  https://doi.org/10.1016/s0016-7037(03)00266-7CrossRefGoogle Scholar
  235. Wetz MS, Hales B, Chase Z, Wheeler PA, Whitney MM (2006) Riverine input of macronutrients, iron, and organic matter to the coastal ocean off Oregon, USA, during the winter. Limnol Oceanogr 51 (5):2221–2231CrossRefGoogle Scholar
  236. Wiederhold JG, Kraemer SM, Teutsch N, Borer PM, Halliday AN, Kretzschmar R (2006) Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environ Sci Technol 40:3787–3793CrossRefGoogle Scholar
  237. Wiederhold JG, Teutsch N, Kraemer SM, Halliday AN, Kretzschmar R (2007a) Iron isotope fractionation during pedogenesis in redoximorphic soils. Soil Sci Soc Am J 71(6).  https://doi.org/10.2136/sssaj2006.0379CrossRefGoogle Scholar
  238. Wiederhold JG, Teutsch N, Kraemer SM, Halliday AN, Kretzschmar R (2007b) Iron isotope fractionation in oxic soils by mineral weathering and podzolization. Geochim Cosmochim Acta 71(23):5821–5833.  https://doi.org/10.1016/j.gca.2007.07.023CrossRefGoogle Scholar
  239. Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211(3–4):343–362.  https://doi.org/10.1016/j.chemgeo.2004.07.002CrossRefGoogle Scholar
  240. Wijsman JWM, Middelburg JJ, Heip CHR (2001a) Reactive iron in Black Sea Sediments: implications for iron cycling. Mar Geol 172:167–180CrossRefGoogle Scholar
  241. Wijsman JWM, Middleburg JJ, Herman PMJ, Bottcher ME, Heip CHR (2001b) Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Mar Chem 74:261–278CrossRefGoogle Scholar
  242. Wilkin RT, Arthur MA, Dean WE (1997) History of water-column anoxia in the Black Sea indicated by pyrite framboid size distribution. Earth Planet Sci Lett 148:517–525CrossRefGoogle Scholar
  243. Wilkin RT, Barnes HL (1996) Pyrite formation by reaction of iron monosufides with dissolved inorganic and organic sulfur species. Geochim Cosmochim Acta 60(21):4167–4179CrossRefGoogle Scholar
  244. Wilson MJ (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner 39(03):233–266.  https://doi.org/10.1180/0009855043930133CrossRefGoogle Scholar
  245. Wu J, Boyle E, Sunda W, Wen L-S (2001) Soluble and colloidal iron in the oligotrophic North Atlantic and North. Pac Sci 293:847–849Google Scholar
  246. Wu J, Wells ML, Rember R (2011a) Dissolved iron anomaly in the deep tropical–subtropical Pacific: evidence for long-range transport of hydrothermal iron. Geochim Cosmochim Acta 75(2):460–468.  https://doi.org/10.1016/j.gca.2010.10.024CrossRefGoogle Scholar
  247. Wu L, Beard BL, Roden EE, Johnson CM (2011b) Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Environ Sci Technol 45(5):1847–1852.  https://doi.org/10.1021/es103171xCrossRefGoogle Scholar
  248. Wu L, Brucker RP, Beard BL, Roden EE, Johnson CM (2013) Iron isotope characteristics of hot springs at chocolate pots, Yellowstone National Park. Astrobiology 13(11):1091–1101.  https://doi.org/10.1089/ast.2013.0996CrossRefGoogle Scholar
  249. Wu L, Druschel G, Findlay A, Beard BL, Johnson CM (2012) Experimental determination of iron isotope fractionations among Feaq2+–FeSaq–mackinawite at low temperatures: Implications for the rock record. Geochim Cosmochim Acta 89:46–61.  https://doi.org/10.1016/j.gca.2012.04.047CrossRefGoogle Scholar
  250. Yang WH, Weber KA, Silver WL (2012) Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction. Nat Geosci 5(8):538–541.  https://doi.org/10.1038/ngeo1530CrossRefGoogle Scholar
  251. Yesavage T, Fantle MS, Vervoort J, Mathur R, Jin L, Liermann LJ, Brantley SL (2012) Fe cycling in the Shale Hills Critical Zone Observatory, Pennsylvania: an analysis of biogeochemical weathering and Fe isotope fractionation. Geochim Cosmochim Acta 99:18–38.  https://doi.org/10.1016/j.gca.2012.09.029CrossRefGoogle Scholar
  252. Yücel M, Gartman A, Chan CS, Luther GW (2011) Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat Geosci 4(6):367–371.  https://doi.org/10.1038/ngeo1148CrossRefGoogle Scholar
  253. Zhang R, John SG, Zhang J, Ren J, Wu Y, Zhu Z, Liu S, Zhu X, Marsay CM, Wenger F (2015) Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: from rivers to estuary to ocean. Earth Planet Sci Lett 424:201–211.  https://doi.org/10.1016/j.epsl.2015.05.031CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations