Advertisement

High-Temperature Fe Isotope Geochemistry

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

Nucleosynthetic production of Fe in massive AGB stars (and in supernovae) generated five Fe isotopes, namely 54Fe, 56Fe, 57Fe, 58Fe, and 60Fe, with long enough half-lives to be extant during the formation of the Solar System.

References

  1. Alexander CMO, Hewins RH (2004) Mass fractionation of Fe and Ni isotopes in metal in Hammadah al Hamra 237. Meteorit Planet Sci 39Google Scholar
  2. An Y, Huang J-X, Griffin WL, Liu C, Huang F (2017) Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian cratons. Geochim Cosmochim Acta 200:167–185.  https://doi.org/10.1016/j.gca.2016.11.041CrossRefGoogle Scholar
  3. Audétat A, Pettke T (2003) The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121.  https://doi.org/10.1016/S0016-7037(02)01049-9CrossRefGoogle Scholar
  4. Barrat JA, Rouxel O, Wang K, Moynier F, Yamaguchi A, Bischoff A, Langlade J (2015) Early stages of core segregation recorded by Fe isotopes in an asteroidal mantle. Earth Planet Sci Lett 419:93–100.  https://doi.org/10.1016/j.epsl.2015.03.026CrossRefGoogle Scholar
  5. Barrat JA, Yamaguchi A, Greenwood RC, Bohn M, Cotten J, Benoit M, Franchi IA (2007) The Stannern trend eucrites: contamination of main group eucritic magmas by crustal partial melts. Geochim Cosmochim Acta 71:4108–4124.  https://doi.org/10.1016/j.gca.2007.06.001CrossRefGoogle Scholar
  6. Beard BL, Johnson CM (2004) Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim Cosmochim Acta 68:4727–4743.  https://doi.org/10.1016/j.gca.2004.04.023CrossRefGoogle Scholar
  7. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003a) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117.  https://doi.org/10.1016/s0009-2541(02)00390-xCrossRefGoogle Scholar
  8. Beard BL, Johnson CM, Von Damm KL, Poulson RL (2003b) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31:629–632.  https://doi.org/10.1130/0091-7613(2003)031%3c0629:iicofc%3e2.0.co;2CrossRefGoogle Scholar
  9. Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825.  https://doi.org/10.1016/j.gca.2006.07.025CrossRefGoogle Scholar
  10. Bennett SA, Rouxel O, Schmidt K, Garbe-Schönberg D, Statham PJ, German CR (2009) Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochim Cosmochim Acta 73:5619–5634.  https://doi.org/10.1016/j.gca.2009.06.027CrossRefGoogle Scholar
  11. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016) Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104.  https://doi.org/10.1016/j.gca.2016.01.009CrossRefGoogle Scholar
  12. Birck JL, Allègre C (1984) Chronium isotopic anomalies in Allende refractory inclusions. Geophys Res Lett 11:943–946CrossRefGoogle Scholar
  13. Blanchard M, Poitrasson F, Méheut M, Lazzeri M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): A first-principles density functional theory study. Geochim Cosmochim Acta 73:6565–6578.  https://doi.org/10.1016/j.gca.2009.07.034CrossRefGoogle Scholar
  14. Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628CrossRefGoogle Scholar
  15. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79.  https://doi.org/10.1016/j.chemgeo.2004.08.004CrossRefGoogle Scholar
  16. Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Rverson FJ, Phinney DL (1998) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141.  https://doi.org/10.1016/S0016-7037(98)00131-8CrossRefGoogle Scholar
  17. Brennecka GA, Borg LE, Wadhwa M (2013) Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proc Natl Acad Sci 110:17241–17246.  https://doi.org/10.1073/pnas.1307759110CrossRefGoogle Scholar
  18. Burkhardt C, Kleine T, Dauphas N, Wieler R (2012) Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth Planet Sci Lett 357–358:298–307.  https://doi.org/10.1016/j.epsl.2012.09.048CrossRefGoogle Scholar
  19. Burkhardt C, Kleine T, Oberli F, Pack A, Bourdon B, Wieler R (2011) Molybdenum isotope anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth. Earth Planet Sci Lett 312:390–400.  https://doi.org/10.1016/j.epsl.2011.10.010CrossRefGoogle Scholar
  20. Buseck PR (1977) Pallasite meteorites-mineralogy, petrology and geochemistry. Geochim Cosmochim 41:711–740CrossRefGoogle Scholar
  21. Canil D, O’Neill HC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635CrossRefGoogle Scholar
  22. Chakraborty S (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite. Rev Mineral Geochemistry 72:603–639.  https://doi.org/10.2138/rmg.2010.72.13CrossRefGoogle Scholar
  23. Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine. J Geophys Res 102:12317–12331CrossRefGoogle Scholar
  24. Chen C, Su BX, Uysal I, Avci E, Zhang PF, Xiao Y, He YS (2015) Iron isotopic constraints on the origin of peridotite and chromitite in the Kizildağ ophiolite, southern Turkey. Chem Geol 417:115–124.  https://doi.org/10.1016/j.chemgeo.2015.10.001CrossRefGoogle Scholar
  25. Chen LM, Song XY, Zhu XK, Zhang XQ, Yu SY, Yi JN (2014) Iron isotope fractionation during crystallization and sub-solidus re-equilibration: constraints from the Baima mafic layered intrusion, SW China. Chem Geol 380:97–109.  https://doi.org/10.1016/j.chemgeo.2014.04.020CrossRefGoogle Scholar
  26. Chernonozhkin SM, Goderis S, Costas-Rodríguez M, Claeys P, Vanhaecke F (2016) Effect of parent body evolution on equilibrium and kinetic isotope fractionation: a combined Ni and Fe isotope study of iron and stony-iron meteorites. Geochim Cosmochim Acta 186:168–188.  https://doi.org/10.1016/j.gca.2016.04.050CrossRefGoogle Scholar
  27. Chernonozhkin SM, Weyrauch M, Goderis S, Oeser M, McKibbin SJ, Horn I, Hecht L, Weyer S, Claeys P, Vanhaecke F (2017) Thermal equilibration of iron meteorite and pallasite parent bodies recorded at the mineral scale by Fe and Ni isotope systematics. Geochim Cosmochim Acta 217:95–111.  https://doi.org/10.1016/j.gca.2017.08.022CrossRefGoogle Scholar
  28. Chopra R, Richter FM, Bruce Watson E, Scullard CR (2012) Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim Cosmochim Acta 88:1–18.  https://doi.org/10.1016/j.gca.2012.03.039CrossRefGoogle Scholar
  29. Collinet M, Charlier B, Namur O, Oeser M, Médard E, Weyer S (2017) Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts. Geochim Cosmochim Acta 207:277–297.  https://doi.org/10.1016/j.gca.2017.03.029CrossRefGoogle Scholar
  30. Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424.  https://doi.org/10.1016/j.epsl.2005.09.020CrossRefGoogle Scholar
  31. Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530.  https://doi.org/10.1016/j.epsl.2004.08.011CrossRefGoogle Scholar
  32. Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33:837–840.  https://doi.org/10.1130/G21675.1CrossRefGoogle Scholar
  33. Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282.  https://doi.org/10.1016/j.epsl.2011.03.014CrossRefGoogle Scholar
  34. Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanalytical Res 35:101–123.  https://doi.org/10.1111/j.1751-908X.2010.00085.xCrossRefGoogle Scholar
  35. Craddock PR, Warren JM, Dauphas N (2013) Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet Sci Lett 365:63–76CrossRefGoogle Scholar
  36. Dauphas N (2007) Diffusion-driven kinetic isotope effect of Fe and Ni during formation of the Widmanstätten pattern. Meteorit Planet Sci 42:1597–1613.  https://doi.org/10.1111/j.1945-5100.2007.tb00593.xCrossRefGoogle Scholar
  37. Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288:255–267.  https://doi.org/10.1016/j.epsl.2009.09.029CrossRefGoogle Scholar
  38. Dauphas N, John SG, Rouxel O (2017) Iron Isotope systematics. Rev Mineral Geochem 82:415–510.  https://doi.org/10.2138/rmg.2017.82.11CrossRefGoogle Scholar
  39. Dauphas N, Poitrasson F, Burkhardt C, Kobayashi H, Kurosawa K (2015) Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth Planet Sci Lett 427:236–248.  https://doi.org/10.1016/j.epsl.2015.07.008CrossRefGoogle Scholar
  40. Dauphas N, Roskosz M, Alp EE, Golden DC, Sio CK, Tissot FLH, Hu MY, Zhao J, Gao L, Morris RV (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite. Geochim Cosmochim Acta 94:254–275.  https://doi.org/10.1016/j.gca.2012.06.013CrossRefGoogle Scholar
  41. Dauphas N, Roskosz M, Alp EE, Neuville DR, Hu MY, Sio CK, Tissot FLH, Zhao J, Tissandier L, Médard E, Cordier C (2014) Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett 398:127–140.  https://doi.org/10.1016/j.epsl.2014.04.033CrossRefGoogle Scholar
  42. Dauphas N, Schauble EA (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annu Rev Earth Planet Sci 44:709–783.  https://doi.org/10.1146/annurev-earth-060115-012157CrossRefGoogle Scholar
  43. Dauphas N, Teng FZ, Arndt NT (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 74:3274–3291.  https://doi.org/10.1016/j.gca.2010.02.031CrossRefGoogle Scholar
  44. Debret B, Millet MA, Pons ML, Bouilhol P, Inglis E, Williams H (2016) Isotopic evidence for iron mobility during subduction. Geology 44:215–218.  https://doi.org/10.1130/G37565.1CrossRefGoogle Scholar
  45. Dohmen R, Chakraborty S (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430.  https://doi.org/10.1007/s00269-007-0158-6CrossRefGoogle Scholar
  46. Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80.  https://doi.org/10.1038/nature10706CrossRefGoogle Scholar
  47. Du DH, Wang XL, Yang T, Chen X, Li JY, Li W (2017) Origin of heavy Fe isotope compositions in high-silica igneous rocks: a rhyolite perspective. Geochim Cosmochim Acta 218:58–72.  https://doi.org/10.1016/j.gca.2017.09.014CrossRefGoogle Scholar
  48. Dziony W, Horn I, Lattard D, Koepke J, Steinhoefel G, Schuessler JA, Holtz F (2014) In-situ Fe isotope ratio determination in Fe–Ti oxides and sulfides from drilled gabbros and basalt from the IODP Hole 1256D in the eastern equatorial Pacific. Chem Geol 363:101–113.  https://doi.org/10.1016/j.chemgeo.2013.10.035CrossRefGoogle Scholar
  49. El Korh A, Luais B, Deloule E, Cividini D (2017) Iron isotope fractionation in subduction-related high-pressure metabasites (Ile de Groix, France). Contrib Mineral Petrol 172:1–19.  https://doi.org/10.1007/s00410-017-1357-xCrossRefGoogle Scholar
  50. Elardo SM, Draper DS, Shearer CK (2011) Lunar Magma Ocean crystallization revisited: Bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75:3024–3045.  https://doi.org/10.1016/j.gca.2011.02.033CrossRefGoogle Scholar
  51. Elardo SM, Shahar A (2017) Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nat Geosci 10:317–321.  https://doi.org/10.1038/ngeo2896CrossRefGoogle Scholar
  52. Elardo SM, Shahar A, Mock TD, Sio CK (2019) The effect of core composition on iron isotope fractionation between planetary cores and mantles. Earth Planet Sci Lett 513:124–134.  https://doi.org/10.1016/j.epsl.2019.02.025CrossRefGoogle Scholar
  53. Elliott T, Steele RCJ (2017) The isotope geochemistry of Ni. Rev Miner Geochem 82:511–542.  https://doi.org/10.2138/rmg.2017.82.12CrossRefGoogle Scholar
  54. Fischer-Gödde M, Burkhardt C, Kruijer TS, Kleine T (2015) Ru isotope heterogeneity in the solar protoplanetary disk. Geochim Cosmochim Acta 168:151–171.  https://doi.org/10.1016/j.gca.2015.07.032CrossRefGoogle Scholar
  55. Fischer-Gödde M, Kleine T (2017) Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541:525–527.  https://doi.org/10.1038/nature21045CrossRefGoogle Scholar
  56. Foden J, Sossi PA, Nebel O (2018) Controls on the iron isotopic composition of global arc magmas. Earth Planet Sci Lett 494:190–201.  https://doi.org/10.1016/j.epsl.2018.04.039CrossRefGoogle Scholar
  57. Foden J, Sossi PA, Wawryk CM (2015) Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos 212–215:32–44.  https://doi.org/10.1016/j.lithos.2014.10.015CrossRefGoogle Scholar
  58. Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191.  https://doi.org/10.1016/j.epsl.2012.11.025CrossRefGoogle Scholar
  59. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  60. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420.  https://doi.org/10.1146/annurev.earth.36.031207.124322CrossRefGoogle Scholar
  61. Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296.  https://doi.org/10.1016/j.epsl.2008.12.009CrossRefGoogle Scholar
  62. Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007) Silicon in the Earth’s core. Nature 447:1102–1106.  https://doi.org/10.1038/nature05927CrossRefGoogle Scholar
  63. Goldmann A, Weyer S (2013) In-situ determination of Fe Isotopes in Kamacite-, Taenite- and Troilite-phases of ordinary chondrites. In: Goldschmidt confrence abstract.  https://doi.org/10.1180/minmag.2013.077.5.7
  64. Günther T, Klemd R, Zhang X, Horn I, Weyer S (2017) In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chem Geol 453:111–127.  https://doi.org/10.1016/j.chemgeo.2017.02.001CrossRefGoogle Scholar
  65. Hawkesworth CJ, Kemp AIS (2006) Evolution of the continental crust. Nature 443:811–817.  https://doi.org/10.1038/nature05191CrossRefGoogle Scholar
  66. He Y, Wu H, Ke S, Liu SA, Wang Q (2017) Iron isotopic compositions of adakitic and non-adakitic granitic magmas: magma compositional control and subtle residual garnet effect. Geochim Cosmochim Acta 203:89–102.  https://doi.org/10.1016/j.gca.2017.01.005CrossRefGoogle Scholar
  67. Heimann A, Beard BL, Johnson CM (2008) The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks. Geochim Cosmochim Acta 72:4379–4396.  https://doi.org/10.1016/j.gca.2008.06.009CrossRefGoogle Scholar
  68. Herzberg C (1992) Depth and degree of melting of komatiites. J Geophys Res 97:4521–4540CrossRefGoogle Scholar
  69. Hezel DC, Needham AW, Armytage R, Georg B, Abel RL, Kurahashi E, Coles BJ, Rehkämper M, Russell SS (2010) A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth Planet Sci Lett 296:423–433.  https://doi.org/10.1016/j.epsl.2010.05.029CrossRefGoogle Scholar
  70. Hezel DC, Wilden JS, Becker D, Steinbach S, Wombacher F, Harak M (2018) Fe isotope composition of bulk chondrules from Murchison (CM2): constraints for parent body alteration, nebula processes and chondrule-matrix complementarity. Earth Planet Sci Lett 490:31–39.  https://doi.org/10.1016/j.epsl.2018.03.013CrossRefGoogle Scholar
  71. Hibbert KEJ, Williams HM, Kerr AC, Puchtel IS (2012) Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present. Earth Planet Sci Lett 321–322:198–207.  https://doi.org/10.1016/j.epsl.2012.01.011CrossRefGoogle Scholar
  72. Hin RC, Fitoussi C, Schmidt MW, Bourdon B (2014) Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth Planet Sci Lett 387:55–66.  https://doi.org/10.1016/j.epsl.2013.11.016CrossRefGoogle Scholar
  73. Hin RC, Schmidt MW, Bourdon B (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochim Cosmochim Acta 93:164–181.  https://doi.org/10.1016/j.gca.2012.06.011CrossRefGoogle Scholar
  74. Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In the mantle and the core. Treatise on GeochemistryGoogle Scholar
  75. Hopp T, Fischer-Gödde M, Kleine T (2018) Ruthenium isotope fractionation in protoplanetary cores. Geochim Cosmochim Acta 223:75–89.  https://doi.org/10.1016/j.gca.2017.11.033CrossRefGoogle Scholar
  76. Horn I, von Blanckenburg F, Schoenberg R, Steinhoefel G, Markl G (2006) In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70:3677–3688.  https://doi.org/10.1016/j.gca.2006.05.002CrossRefGoogle Scholar
  77. Huang F, Zhang Z, Lundstrom CC, Zhi X (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 75:3318–3334.  https://doi.org/10.1016/j.gca.2011.03.036CrossRefGoogle Scholar
  78. Hyslop EV, Valley JW, Johnson CM, Beard BL (2008) The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, northern Minnesota. Contrib to Mineral Petrol 155:313–328.  https://doi.org/10.1007/s00410-007-0244-2CrossRefGoogle Scholar
  79. Inglis EC, Debtre B, Burton KW, Millet M-A, Pons M-L, Dale CW, Bouilhol P, Cooper M, Nowell GM, McCoy-West AJ, Williams HM (2017) The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: a case study from Western Alpine ophiolites. Geochem Geophys Geosystems 2562–2579.  https://doi.org/10.1002/2016gc006679CrossRefGoogle Scholar
  80. Ionov DA, Chanefo I, Bodinier JL (2005) Origin of Fe-rich lherzolites and wehrlites from Tok, SE Siberia by reactive melt percolation in refractory mantle peridotites. Contrib Mineral Petrol 150:335–353.  https://doi.org/10.1007/s00410-005-0026-7CrossRefGoogle Scholar
  81. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218.  https://doi.org/10.1016/j.gca.2006.06.1611CrossRefGoogle Scholar
  82. Johnson CM, Bell K, Beard BL, Shultis AI (2010) Iron isotope compositions of carbonatites record melt generation, crystallization, and late-stage volatile-transport processes. Mineral Petrol 98:91–110.  https://doi.org/10.1007/s00710-009-0055-4CrossRefGoogle Scholar
  83. Jordan MK, Tang HL, Kohl IE, Young ED (2019) Iron isotope constraints on planetesimal core formation in the early solar system. Geochim Cosmochim Acta 246:461–477.  https://doi.org/10.1016/j.gca.2018.12.005CrossRefGoogle Scholar
  84. Jurewicz AJG, Mittlefehldt DW, Jones JH (1991) Partial melting of the allende (CV3) meteorite: implications for origins of basaltic meteorites. Science (80-) 252:695–698.  https://doi.org/10.1126/science.252.5006.695CrossRefGoogle Scholar
  85. Kahl M, Chakraborty S, Costa F, Pompilio M (2011) Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet Sci Lett 308:11–22.  https://doi.org/10.1016/j.epsl.2011.05.008CrossRefGoogle Scholar
  86. Kehm K, Hauri EH, Alexander CMOD, Carlson RW (2003) High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS. Geochim Cosmochim Acta 67:2879–2891.  https://doi.org/10.1016/S0016-7037(03)00080-2CrossRefGoogle Scholar
  87. Kleine T, Mezger K, Palme H, Scherer E, Münker C (2005) Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182 W in CAIs, metal-rich chondrites, and iron meteorites. Geochim Cosmochim Acta 69:5805–5818.  https://doi.org/10.1016/j.gca.2005.07.012CrossRefGoogle Scholar
  88. Kleine T, Touboul M, Bourdon B, Nimmo F, Mezger K, Palme H, Jacobsen SB, Yin Q-Z, Halliday AN (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188.  https://doi.org/10.1016/j.gca.2008.11.047CrossRefGoogle Scholar
  89. Knipping JL, Behrens H, Wilke M, Göttlicher J, Stabile P (2015) Effect of oxygen fugacity on the coordination and oxidation state of iron in alkali bearing silicate melts. Chem Geol 411:143–154.  https://doi.org/10.1016/j.chemgeo.2015.07.004CrossRefGoogle Scholar
  90. Kodolányi J, Stephan T, Trappitsch R, Hoppe P, Pignatari M, Davis AM, Pellin MJ (2018) Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae. Geochim Cosmochim Acta 221:127–144.  https://doi.org/10.1016/j.gca.2017.05.029CrossRefGoogle Scholar
  91. Konter JG, Pietruszka AJ, Hanan BB, Finlayson VA, Craddock PR, Jackson MG, Dauphas N (2016) Unusual δ56Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet Sci Lett 450:221–232.  https://doi.org/10.1016/j.epsl.2016.06.029CrossRefGoogle Scholar
  92. Lai YJ, Pogge von Strandmann PAE, Dohmen R, Takazawa E, Elliott T (2015) The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 164:318–332.  https://doi.org/10.1016/j.gca.2015.05.006CrossRefGoogle Scholar
  93. Lee CTA, Luffi P, Plank T, Dalton H, Leeman WP (2009) Constraints on the depths and temperatures of basaltic magma generation on earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett 279:20–33.  https://doi.org/10.1016/j.epsl.2008.12.020CrossRefGoogle Scholar
  94. Li DY, Xiao YL, Li WY, Zhu X, Williams HM, Li YL (2016) Iron isotopic systematics of UHP eclogites respond to oxidizing fluid during exhumation. J Metamorph Geol 34:987–997.  https://doi.org/10.1111/jmg.12217CrossRefGoogle Scholar
  95. Li J, Huang X-L, Wei G-J, Liu Y, Ma J-L, Han L, He P-L (2018a) Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochim Cosmochim Acta 240:64–79.  https://doi.org/10.1016/j.gca.2018.08.021CrossRefGoogle Scholar
  96. Li JX, Qin KZ, Li GM, Evans NJ, Huang F, Zhao JX (2018b) Iron isotope fractionation during magmatic-hydrothermal evolution: a case study from the Duolong porphyry Cu-Au deposit, Tibet. Geochim Cosmochim Acta 238:1–15.  https://doi.org/10.1016/j.gca.2018.07.008CrossRefGoogle Scholar
  97. Liu J, Dauphas N, Roskosz M, Hu MY, Yang H, Bi W, Zhao J, Alp EE, Hu JY, Lin J-F (2017) Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nat Commun 1–6.  https://doi.org/10.1038/ncomms14377
  98. Liu PP, Zhou MF, Luais B, Cividini D, Rollion-Bard C (2014) Disequilibrium iron isotopic fractionation during the high-temperature magmatic differentiation of the Baima Fe-Ti oxide-bearing mafic intrusion, SW China. Earth Planet Sci Lett 399:21–29.  https://doi.org/10.1016/j.epsl.2014.05.002CrossRefGoogle Scholar
  99. Liu Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW, Dauphas N, Taylor LA (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262.  https://doi.org/10.1016/j.gca.2010.08.008CrossRefGoogle Scholar
  100. Macris CA, Manning CE, Young ED (2015) Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochim Cosmochim Acta 154:168–185.  https://doi.org/10.1016/j.gca.2015.01.024CrossRefGoogle Scholar
  101. Magna T, Hu Y, Teng FZ, Mezger K (2017) Magnesium isotope systematics in Martian meteorites. Earth Planet Sci Lett 474:419–426.  https://doi.org/10.1016/j.epsl.2017.07.012CrossRefGoogle Scholar
  102. Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353.  https://doi.org/10.1016/j.epsl.2006.01.005CrossRefGoogle Scholar
  103. Marhas KK, Amari S, Gyngard F, Zinner E, Gallino R (2008) Iron and nickel isotopic ratios in presolar sic grains. Astrophys J 689:622–645CrossRefGoogle Scholar
  104. Markl G, von Blanckenburg F, Wagner T (2006) Iron isotope fractionation during hydrothermal ore deposition and alteration. Geochim Cosmochim Acta 70:3011–3030.  https://doi.org/10.1016/j.gca.2006.02.028CrossRefGoogle Scholar
  105. Marschall HR, Dohmen R, Ludwig T (2013) Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth Planet Sci Lett 375:361–371.  https://doi.org/10.1016/j.epsl.2013.05.055CrossRefGoogle Scholar
  106. McCammon C, Hutchison M, Harris J (1997) Ferric iron content of mineral inclusions in diamonds from Sao Luiz: a view into the lower mantle. Science (80-) 278:434–436Google Scholar
  107. McCoy-West AJ, Fitton JG, Pons ML, Inglis EC, Williams HM (2018) The Fe and Zn isotope composition of deep mantle source regions: insights from Baffin Island picrites. Geochim Cosmochim Acta 238:542–562.  https://doi.org/10.1016/j.gca.2018.07.021CrossRefGoogle Scholar
  108. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  109. Meibom A, Petaev MI, Alexander N, Keil K, Wood JA (2001) Growth mechanism and additional constraints on FeNi metal condensation in the solar nebula. J Geophys Res 106:797–801CrossRefGoogle Scholar
  110. Millet MA, Dauphas N, Greber ND, Burton KW, Dale CW, Debret B, Macpherson CG, Nowell GM, Williams HM (2016) Titanium stable isotope investigation of magmatic processes on the Earth and Moon. Earth Planet Sci Lett 449:197–205.  https://doi.org/10.1016/j.epsl.2016.05.039CrossRefGoogle Scholar
  111. Mishra RK, Goswami JN (2014) Fe-Ni and Al-Mg isotope records in UOC chondrules: plausible stellar source of 60Fe and other short-lived nuclides in the early Solar System. Geochim Cosmochim Acta 132:440–457.  https://doi.org/10.1016/j.gca.2014.01.011CrossRefGoogle Scholar
  112. Miyamoto M (1997) Chemical zoning of olivine in several pallasites. J Geophys Res 102:21613–21618CrossRefGoogle Scholar
  113. Moeller K, Schoenberg R, Grenne T, Thorseth IH, Drost K, Pedersen RB (2014) Comparison of iron isotope variations in modern and Ordovician siliceous Fe oxyhydroxide deposits. Geochim Cosmochim Acta 126:422–440.  https://doi.org/10.1016/j.gca.2013.11.018CrossRefGoogle Scholar
  114. Moynier F, Albarède F, Herzog GF (2006) Isotopic composition of zinc, copper, and iron in lunar samples. Geochim Cosmochim Acta 70:6103–6117.  https://doi.org/10.1016/j.gca.2006.02.030CrossRefGoogle Scholar
  115. Moynier F, Blichert-Toft J, Telouk P, Luck JM, Albarède F (2007) Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites. Geochim Cosmochim Acta 71:4365–4379.  https://doi.org/10.1016/j.gca.2007.06.049CrossRefGoogle Scholar
  116. Mullane E, Russell SS, Gounelle M (2005) Nebular and asteroidal modification of the iron isotope composition of chondritic components. Earth Planet Sci Lett 239:203–218.  https://doi.org/10.1016/j.epsl.2005.07.026CrossRefGoogle Scholar
  117. Nebel O, Arculus RJ, Sossi PA, Jenner FE, Whan THE (2013) Iron isotopic evidence for convective resurfacing of recycled arc-front mantle beneath back-arc basins. Geophys Res Lett 40:5849–5853.  https://doi.org/10.1002/2013GL057976CrossRefGoogle Scholar
  118. Nebel O, Campbell IH, Sossi PA, Van Kranendonk MJ (2014) Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. Earth Planet Sci Lett 397:111–120.  https://doi.org/10.1016/j.epsl.2014.04.028CrossRefGoogle Scholar
  119. Nebel O, Sossi PA, Bénard A, Wille M, Vroon PZ, Arculus RJ (2015) Redox-variability and controls in subduction zones from an iron-isotope perspective. Earth Planet Sci Lett 432:142–151.  https://doi.org/10.1016/j.epsl.2015.09.036CrossRefGoogle Scholar
  120. Nebel O, Sossi PA, Foden J, Bénard A, Brandl PA, Stammeier JA, Lupton J, Richter M, Arculus RJ (2018) Iron isotope variability in ocean floor lavas and mantle sources in the Lau back-arc basin. Geochim Cosmochim Acta 241:150–163.  https://doi.org/10.1016/j.gca.2018.08.046CrossRefGoogle Scholar
  121. Needham AW, Porcelli D, Russell SS (2009) An Fe isotope study of ordinary chondrites. Geochim Cosmochim Acta 73:7399–7413.  https://doi.org/10.1016/j.gca.2009.08.034CrossRefGoogle Scholar
  122. Neukampf J, Ellis BS, Magna T, Laurent O, Bachmann O (2019) Partitioning and isotopic fractionation of lithium in mineral phases of hot, dry rhyolites: The case of the Mesa Falls Tuff, Yellowstone. Chem Geol 506:175–186.  https://doi.org/10.1016/j.chemgeo.2018.12.031CrossRefGoogle Scholar
  123. Nichols CIO, Krakow R, Herrero-Albillos J, Kronast F, Northwood-Smith G, Harrison RJ (2018) Microstructural and paleomagnetic insight into the cooling history of the IAB parent body. Geochim Cosmochim Acta 229:1–19.  https://doi.org/10.1016/j.gca.2018.03.009CrossRefGoogle Scholar
  124. Niederer FR, Papanastassiou DA (1984) Ca isotopes in refractory inclusions. Geochim Cosmochim Acta 48:1279–1293.  https://doi.org/10.1016/0016-7037(84)90062-0CrossRefGoogle Scholar
  125. Niederer FR, Papanastassiou DA, Wasserburg GJ (1980) Endemic isotopic anomalies in titanium. Astrophys J 240:73–77CrossRefGoogle Scholar
  126. Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. J Petrol 38:1047–1074CrossRefGoogle Scholar
  127. Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150.  https://doi.org/10.1016/j.gca.2015.01.025CrossRefGoogle Scholar
  128. Oeser M, Ruprecht P, Weyer S (2018) Combined Fe-Mg chemical and isotopic zoning in olivine constraining magma mixing-to-eruption timescales for the continental arc volcano Irazú (Costa Rica) and Cr diffusion in olivine. Am Mineral 103:582–599.  https://doi.org/10.2138/am-2018-6258CrossRefGoogle Scholar
  129. Oeser M, Weyer S, Horn I, Schuth S (2014) High-precision Fe and Mg isotope ratios of silicate reference glasses determined In Situ by Femtosecond LA-MC-ICP-MS and by solution nebulisation MC-ICP-MS. Geostand Geoanalytical Res 38:311–328.  https://doi.org/10.1111/j.1751-908X.2014.00288.xCrossRefGoogle Scholar
  130. Palme H, Jones A (2003) Solar System abundance of the elements. Treatise Geochem 1:41–60CrossRefGoogle Scholar
  131. Peters BJ, Shahar A, Carlson RW, Day JMD, Mock TD (2019) A sulfide perspective on iron isotope fractionation during ocean island basalt petrogenesis. Geochim Cosmochim Acta 245:59–78.  https://doi.org/10.1016/j.gca.2018.10.015CrossRefGoogle Scholar
  132. Poitrasson F, Delpech G, Grégoire M (2013) On the iron isotope heterogeneity of lithospheric mantle xenoliths: implications for mantle metasomatism, the origin of basalts and the iron isotope composition of the Earth. Contrib to Mineral Petrol 165:1243–1258.  https://doi.org/10.1007/s00410-013-0856-7CrossRefGoogle Scholar
  133. Poitrasson F, Freydier R (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem Geol 222:132–147.  https://doi.org/10.1016/j.chemgeo.2005.07.005CrossRefGoogle Scholar
  134. Poitrasson F, Halliday AN, Lee DC, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223:253–266.  https://doi.org/10.1016/j.epsl.2004.04.032CrossRefGoogle Scholar
  135. Poitrasson F, Levasseur S, Teutsch N (2005) Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet Sci Lett 234:151–164.  https://doi.org/10.1016/j.epsl.2005.02.010CrossRefGoogle Scholar
  136. Poitrasson F, Roskosz M, Corgne A (2009) No iron isotope fractionation between molten alloys and silicate melt to 2000 ℃ and 7.7 GPa: experimental evidence and implications for planetary differentiation and accretion. Earth Planet Sci Lett 278:376–385.  https://doi.org/10.1016/j.epsl.2008.12.025CrossRefGoogle Scholar
  137. Polyakov VB (2009) Equilibrium iron isotope fractionation at core-mantle boundary conditions. Science (80-) 323:912–914.  https://doi.org/10.1126/science.1166329CrossRefGoogle Scholar
  138. Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mössbauer spectroscopy. Geochim Cosmochim Acta 71:3833–3846.  https://doi.org/10.1016/j.gca.2007.05.019CrossRefGoogle Scholar
  139. Polyakov VB, Mineev SD (2000) The use of Mössbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64:849–865.  https://doi.org/10.1016/S0016-7037(99)00329-4CrossRefGoogle Scholar
  140. Polyakov VB, Soultanov DM (2011) New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems. Geochim Cosmochim Acta 75:1957–1974.  https://doi.org/10.1016/j.gca.2011.01.019CrossRefGoogle Scholar
  141. Pringle EA, Moynier F (2017) Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion. Earth Planet Sci Lett 473:62–70.  https://doi.org/10.1016/j.epsl.2017.05.033CrossRefGoogle Scholar
  142. Quitté G, Halliday A, Meyer BS, Markowski A, Latkoczy C, Günther D (2007) Correlated Iron 60, Nickel 62, and Zirconium 96 in refractory inclusions and the origin of the solar system. Astrophys J 655:678–684.  https://doi.org/10.1086/509771CrossRefGoogle Scholar
  143. Richter FM, Dauphas N, Teng FZ (2009a) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103.  https://doi.org/10.1016/j.chemgeo.2008.06.011CrossRefGoogle Scholar
  144. Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923.  https://doi.org/10.1016/S0016-7037(03)00174-1CrossRefGoogle Scholar
  145. Richter FM, Liang Y, Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63:2853–2861.  https://doi.org/10.1016/S0016-7037(99)00164-7CrossRefGoogle Scholar
  146. Richter FM, Watson EB, Mendybaev R, Dauphas N, Georg B, Watkins J, Valley J (2009b) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim Cosmochim Acta 73:4250–4263.  https://doi.org/10.1016/j.gca.2009.04.011CrossRefGoogle Scholar
  147. Righter K, Drake MJ (1996) Core formation in Earth’s moon, Mars, and Vesta. Icarus 124:513–529.  https://doi.org/10.1006/icar.1996.0227CrossRefGoogle Scholar
  148. Roskosz M, Luais B, Watson HC, Toplis MJ, Alexander CMOD, Mysen BO (2006) Experimental quantification of the fractionation of Fe isotopes during metal segregation from a silicate melt. Earth Planet Sci Lett 248:851–867.  https://doi.org/10.1016/j.epsl.2006.06.037CrossRefGoogle Scholar
  149. Roskosz M, Sio CKI, Dauphas N, Bi W, Tissot FLH, Hu MY, Zhao J, Alp EE (2015) Spinel-olivine-pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites. Geochim Cosmochim Acta 169:184–199.  https://doi.org/10.1016/j.gca.2015.07.035CrossRefGoogle Scholar
  150. Rouxel O, Dobbek N, Ludden J, Fouquet Y (2003) Iron isotope fractionation during oceanic crust alteration. Chem Geol 202:155–182.  https://doi.org/10.1016/j.chemgeo.2003.08.011CrossRefGoogle Scholar
  151. Rouxel O, Fouquet Y, Ludden JN (2004) Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes. Geochim Cosmochim Acta 68:2295–2311.  https://doi.org/10.1016/j.gca.2003.11.029CrossRefGoogle Scholar
  152. Rouxel O, Shanks WC, Bach W, Edwards KJ (2008) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chem Geol 252:214–227.  https://doi.org/10.1016/j.chemgeo.2008.03.009CrossRefGoogle Scholar
  153. Rouxel O, Toner B, Germain Y, Glazer B (2018) Geochemical and iron isotopic insights into hydrothermal iron oxyhydroxide deposit formation at Loihi Seamount. Geochim Cosmochim Acta 220:449–482.  https://doi.org/10.1016/j.gca.2017.09.050CrossRefGoogle Scholar
  154. Rouxel O, Toner BM, Manganini SJ, German CR (2016) Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N. Chem Geol 441:212–234.  https://doi.org/10.1016/j.chemgeo.2016.08.027CrossRefGoogle Scholar
  155. Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64Google Scholar
  156. Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293.  https://doi.org/10.1016/j.epsl.2007.01.035CrossRefGoogle Scholar
  157. Rudnick RL, McDonough WF, Chappell BC (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett Sci 114:463–475CrossRefGoogle Scholar
  158. Ruprecht P, Plank T (2013) Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:68–72.  https://doi.org/10.1038/nature12342CrossRefGoogle Scholar
  159. Rustad JR, Yin QZ (2009) Iron isotope fractionation in the earth’s lower mantle. Nat Geosci 2:514–518.  https://doi.org/10.1038/ngeo546CrossRefGoogle Scholar
  160. Rutherford (2008) Magma ascent rates. Rev Mineral Geochem 69:241–271CrossRefGoogle Scholar
  161. Ryder G (1991) Lunar ferroan Anorthosites and Mare Basalts sources: the mixed connection. Geophys Res Lett 18:2065–2068CrossRefGoogle Scholar
  162. Sanloup C, Fei Y (2004) Closure of the Fe-S-Si liquid miscibility gap at high pressure. Phys Earth Planet Inter 147:57–65.  https://doi.org/10.1016/j.pepi.2004.06.008CrossRefGoogle Scholar
  163. Schauble E, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65:2487–2497CrossRefGoogle Scholar
  164. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55:65–111CrossRefGoogle Scholar
  165. Schoenberg R, von Blanckenburg F (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252:342–359.  https://doi.org/10.1016/j.epsl.2006.09.045CrossRefGoogle Scholar
  166. Schoenberg R, Marks MAW, Schuessler JA, von Blanckenburg F, Markl G (2009) Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland. Chem Geol 258:65–77.  https://doi.org/10.1016/j.chemgeo.2008.06.023CrossRefGoogle Scholar
  167. Schönbächler M, Lee DC, Rehkämper M, Halliday AN, Fehr MA, Hattendorf B, Günther D (2003) Zirconium isotope evidence for incomplete admixing of r-process components in the solar nebula. Earth Planet Sci Lett 216:467–481.  https://doi.org/10.1016/S0012-821X(03)00547-8CrossRefGoogle Scholar
  168. Schuessler JA (2008) Controls on stable iron isotope variations in magmatic systems. PhD theses, HannoverGoogle Scholar
  169. Schuessler JA, Schoenberg R, Behrens H, von Blanckenburg F (2007) The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. Geochim Cosmochim Acta 71:417–433.  https://doi.org/10.1016/j.gca.2006.09.012CrossRefGoogle Scholar
  170. Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland-evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258:78–91.  https://doi.org/10.1016/j.chemgeo.2008.06.021CrossRefGoogle Scholar
  171. Sedaghatpour F, Teng FZ (2016) Magnesium isotopic composition of achondrites. Geochim Cosmochim Acta 174:167–179.  https://doi.org/10.1016/j.gca.2015.11.016CrossRefGoogle Scholar
  172. Sedaghatpour F, Teng FZ, Liu Y, Sears DWG, Taylor LA (2013) Magnesium isotopic composition of the Moon. Geochim Cosmochim Acta 120:1–16.  https://doi.org/10.1016/j.gca.2013.06.026CrossRefGoogle Scholar
  173. Seitz HM, Brey GP, Weyer S, Durali S, Ott U, Münker C, Mezger K (2006) Lithium isotope compositions of Martian and lunar reservoirs. Earth Planet Sci Lett 245:6–18.  https://doi.org/10.1016/j.epsl.2006.03.007CrossRefGoogle Scholar
  174. Severmann S, Johnson CM, Beard BL, German CR, Edmonds HN, Chiba H, Green DRH (2004) The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N. Earth Planet Sci Lett 225:63–76.  https://doi.org/10.1016/j.epsl.2004.06.001CrossRefGoogle Scholar
  175. Shahar A, Hillgren VJ, Horan MF, Mesa-Garcia J, Kaufman LA, Mock TD (2015) Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochim Cosmochim Acta 150:253–264.  https://doi.org/10.1016/j.gca.2014.08.011CrossRefGoogle Scholar
  176. Shahar A, Schauble EA, Caracas R, Gleason AE, Reagan MM, Xiao Y, Shu J, Mao W (2016) Pressure-dependent isotopic composition of iron alloys. Science (80-) 352:580–583CrossRefGoogle Scholar
  177. Shahar A, Young ED, Manning CE (2008) Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet Sci Lett 268:330–338.  https://doi.org/10.1016/j.epsl.2008.01.026CrossRefGoogle Scholar
  178. Shahar A, Ziegler K, Young ED, Ricolleau A, Schauble EA, Fei Y (2009) Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth’s core formation. Earth Planet Sci Lett 288:228–234.  https://doi.org/10.1016/j.epsl.2009.09.025CrossRefGoogle Scholar
  179. Sharma M, Polizzotto M, Anbar AD (2001) Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth Planet Sci Lett 6036:1–13.  https://doi.org/10.1016/j.engappai.2010.01.015CrossRefGoogle Scholar
  180. Shollenberger QR, Wittke A, Render J, Mane P, Schuth S, Weyer S, Gussone N, Wadhwa M, Brennecka GA (2019) Combined mass-dependent and nucleosynthetic isotope variations in refractory inclusions and their mineral separates. Geochim Cosmochim Acta 263:215–234.  https://doi.org/10.1016/j.gca.2019.07.021CrossRefGoogle Scholar
  181. Siebert J, Bandro J, Antonangeli D, Ryerson FJ (2013) Terrestrial accretion under oxidizing conditions. Science (80-) 339:1194–1197CrossRefGoogle Scholar
  182. Sio CK, Roskosz M, Dauphas N, Bennett NR, Mock T, Shahar A (2018) The isotope effect for Mg-Fe interdiffusion in olivine and its dependence on crystal orientation, composition and temperature. Geochim Cosmochim Acta 239:463–480.  https://doi.org/10.1016/j.gca.2018.06.024CrossRefGoogle Scholar
  183. Sio CKI, Dauphas N (2017) Thermal and crystallization histories of magmatic bodies by Monte Carlo inversion of Mg-Fe isotopic profiles in olivine. Geology 45:67–70.  https://doi.org/10.1130/G38056.1CrossRefGoogle Scholar
  184. Sio CKI, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg-Fe isotopic analyses. Geochim Cosmochim Acta 123:302–321.  https://doi.org/10.1016/j.gca.2013.06.008CrossRefGoogle Scholar
  185. Sorbadere F, Laurenz V, Frost DJ, Wenz M, Rosenthal A, McCammon C, Rivard C (2018) The behaviour of ferric iron during partial melting of peridotite. Geochim Cosmochim Acta 239:235–254.  https://doi.org/10.1016/j.gca.2018.07.019CrossRefGoogle Scholar
  186. Sossi PA, Foden JD, Halverson GP (2012) Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania. Contrib Mineral Petrol 164:757–772.  https://doi.org/10.1007/s00410-012-0769-xCrossRefGoogle Scholar
  187. Sossi PA, Nebel O, Foden J (2016a) Iron isotope systematics in planetary reservoirs. Earth Planet Sci Lett 452:295–308.  https://doi.org/10.1016/j.epsl.2016.07.032CrossRefGoogle Scholar
  188. Sossi PA, Nebel O, Anand M, Poitrasson F (2016b) On the iron isotope composition of Mars and volatile depletion in the terrestrial planets. Earth Planet Sci Lett 449:360–371.  https://doi.org/10.1016/j.epsl.2016.05.030CrossRefGoogle Scholar
  189. Sossi PA, O’Neill HSC (2017) The effect of bonding environment on iron isotope fractionation between minerals at high temperature. Geochim Cosmochim Acta 196:121–143.  https://doi.org/10.1016/j.gca.2016.09.017CrossRefGoogle Scholar
  190. Sossi PA, O’Neill HSC (2016) Liquidus temperatures of komatiites and the effect of cooling rate on element partitioning between olivine and komatiitic melt. Contrib Mineral Petrol 171:1–25.  https://doi.org/10.1007/s00410-016-1260-xCrossRefGoogle Scholar
  191. Su BX, Teng FZ, Hu Y, Shi RD, Zhou MF, Zhu B, Liu F, Gong XH, Huang QS, Xiao Y, Chen C, He YS (2015) Iron and magnesium isotope fractionation in oceanic lithosphere and sub-arc mantle: perspectives from ophiolites. Earth Planet Sci Lett 430:523–532.  https://doi.org/10.1016/j.epsl.2015.08.020CrossRefGoogle Scholar
  192. Syverson DD, Borrok DM, Seyfried WE (2013) Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim Cosmochim Acta 122:170–183.  https://doi.org/10.1016/j.gca.2013.08.027CrossRefGoogle Scholar
  193. Tang H, Dauphas N (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth Planet Sci Lett 359:248–263.  https://doi.org/10.1016/j.epsl.2012.10.011CrossRefGoogle Scholar
  194. Tatsumoto M, Basu AR, Wankang H, Junwen W, Guanghong X (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128.  https://doi.org/10.1016/0012-821x(92)90214-gCrossRefGoogle Scholar
  195. Telus M, Dauphas N, Moynier F, Tissot FLH, Teng F-Z, Nabelek PI, Craddock PR, Groat LA (2012) Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: the tale from migmatites, granitoids, and pegmatites. Geochim Cosmochim Acta 97:247–265.  https://doi.org/10.1016/j.gca.2012.08.024CrossRefGoogle Scholar
  196. Teng F-Z, Li W-Y, Ke S, Marty B, Dauphas N, Huang S, Wu F-Y, Pourmand A (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74:4150–4166.  https://doi.org/10.1016/j.gca.2010.04.019CrossRefGoogle Scholar
  197. Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science (80-) 320:1620–1622.  https://doi.org/10.1126/science.1157166CrossRefGoogle Scholar
  198. Teng FZ, Dauphas N, Helz RT, Gao S, Huang S (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308:317–324.  https://doi.org/10.1016/j.epsl.2011.06.003CrossRefGoogle Scholar
  199. Teng FZ, Dauphas N, Huang S, Marty B (2013) Iron isotopic systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26.  https://doi.org/10.1016/j.gca.2012.12.027CrossRefGoogle Scholar
  200. Teng FZ, Mcdonough WF, Rudnick RL, Walker RJ, Sirbescu MLC (2006) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91:1488–1498.  https://doi.org/10.2138/am.2006.2083CrossRefGoogle Scholar
  201. Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261:84–92.  https://doi.org/10.1016/j.epsl.2007.06.004CrossRefGoogle Scholar
  202. Theis KJ, Burgess R, Lyon IC, Sears DW (2008) The origin and history of ordinary chondrites: a study by iron isotope measurements of metal grains from ordinary chondrites. Geochim Cosmochim Acta 72:4440–4456.  https://doi.org/10.1016/j.gca.2008.05.057CrossRefGoogle Scholar
  203. Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63:907–910.  https://doi.org/10.1016/S0016-7037(98)00318-4CrossRefGoogle Scholar
  204. Trappitsch R, Stephan T, Savina MR, Davis AM, Pellin MJ, Rost D, Gyngard F, Gallino R, Bisterzo S, Cristallo S, Dauphas N (2018) Simultaneous iron and nickel isotopic analyses of presolar silicon carbide grains. Geochim Cosmochim Acta 221:87–108.  https://doi.org/10.1016/j.gca.2017.05.031CrossRefGoogle Scholar
  205. Turner S, Evans P, Hawkesworth C (2001) Ultrafast source-to-surface movement of melt at island systematics. Science (80-) 292:1363–1366CrossRefGoogle Scholar
  206. Valley GE, Anderson HH (1947) A comparison of the abundance ratios of the isotopes of terrestrial and of meteoritic iron. J Am Chem Soc 69:1871–1875.  https://doi.org/10.1021/ja01200a010CrossRefGoogle Scholar
  207. Van Kranendonk MJ (2010) Two types of Archean continental crust: plume and plate tectonics on early earth. Am J Sci 310:1187–1209.  https://doi.org/10.2475/10.2010.01CrossRefGoogle Scholar
  208. Van Orman JA, Krawczynski MJ (2015) Theoretical constraints on the isotope effect for diffusion in minerals. Geochim Cosmochim Acta 164:365–381.  https://doi.org/10.1016/j.gca.2015.04.051CrossRefGoogle Scholar
  209. Wade J, Wood BJ (2005) Core formation and the oxidation state of the Earth. Earth Planet Sci Lett 236:78–95.  https://doi.org/10.1016/j.epsl.2005.05.017CrossRefGoogle Scholar
  210. Wadhwa M (2008) Redox conditions on small bodies, the Moon and Mars. Rev Mineral Geochem 68:493–510CrossRefGoogle Scholar
  211. Wang K, Day JMD, Korotev RL, Zeigler RA, Moynier F (2014a) Iron isotope fractionation during sulfide-rich felsic partial melting in early planetesimals. Earth Planet Sci Lett 392:124–132.  https://doi.org/10.1016/j.epsl.2014.02.022CrossRefGoogle Scholar
  212. Wang K, Jacobsen SB, Sedaghatpour F, Chen H, Korotev RL (2015) The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes. Earth Planet Sci Lett 430:202–208.  https://doi.org/10.1016/j.epsl.2015.08.019CrossRefGoogle Scholar
  213. Wang K, Moynier F, Barrat JA, Zanda B, Paniello RC, Savage PS (2013) Homogeneous distribution of Fe isotopes in the early solar nebula. Meteorit Planet Sci 48:354–364.  https://doi.org/10.1111/maps.12060CrossRefGoogle Scholar
  214. Wang K, Moynier F, Dauphas N, Barrat JA, Craddock P, Sio CK (2012) Iron isotope fractionation in planetary crusts. Geochim Cosmochim Acta 89:31–45.  https://doi.org/10.1016/j.gca.2012.04.050CrossRefGoogle Scholar
  215. Wang K, Savage PS, Moynier F (2014b) The iron isotope composition of enstatite meteorites: implications for their origin and the metal/sulfide Fe isotopic fractionation factor. Geochim Cosmochim Acta 142:149–165.  https://doi.org/10.1016/j.gca.2014.07.019CrossRefGoogle Scholar
  216. Wang Y, Zhu XK, Mao JW, Li ZH, Cheng YB (2011) Iron isotope fractionation during skarn-type metallogeny: a case study of Xinqiao Cu-S-Fe-Au deposit in the Middle-Lower Yangtze valley. Ore Geol Rev 43:194–202.  https://doi.org/10.1016/j.oregeorev.2010.12.004CrossRefGoogle Scholar
  217. Wänke H, Dreibus G (1988) Chemical Composition and Accretion History of Terrestrial Planets. Philos Trans R Soc A 325:545–557.  https://doi.org/10.1098/rsta.1988.0067CrossRefGoogle Scholar
  218. Watson EB, Müller T (2009) Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chem Geol 267:111–124.  https://doi.org/10.1016/j.chemgeo.2008.10.036CrossRefGoogle Scholar
  219. Watson HC, Richter F, Liu A, Huss GR (2016) Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites. Earth Planet Sci Lett 451:159–167.  https://doi.org/10.1016/j.epsl.2016.06.030CrossRefGoogle Scholar
  220. Wawryk CM, Foden JD (2015) Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: a case study from the Renison Sn-W deposit, Tasmania. Geochim Cosmochim Acta 150:285–298.  https://doi.org/10.1016/j.gca.2014.09.044CrossRefGoogle Scholar
  221. Weyer S, Anbar AD, Brey GP, Münker C, Mezger K, Woodland AB (2007) Fe-isotope fractionation during partial melting on Earth and the current view on the Fe-isotope budgets of the planets (reply to the comment of F. Poitrasson and to the comment of B.L. Beard and C.M. Johnson on “Iron isotope fractionation during planetary. Earth Planet Sci Lett 256:638–646.  https://doi.org/10.1016/j.epsl.2007.01.038CrossRefGoogle Scholar
  222. Weyer S, Anbar AD, Brey GP, Münker C, Mezger K, Woodland AB (2005) Iron isotope fractionation during planetary differentiation. Earth Planet Sci Lett 240:251–264.  https://doi.org/10.1016/j.epsl.2005.09.023CrossRefGoogle Scholar
  223. Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259:119–133.  https://doi.org/10.1016/j.epsl.2007.04.033CrossRefGoogle Scholar
  224. Weyer S, Seitz HM (2012) Coupled lithium- and iron isotope fractionation during magmatic differentiation. Chem Geol 294–295:42–50.  https://doi.org/10.1016/j.chemgeo.2011.11.020CrossRefGoogle Scholar
  225. Weyrauch M, Oeser M, Brüske A, Weyer S (2017) In situ high-precision Ni isotope analysis of metals by femtosecond-LA-MC-ICP-MS. J Anal At Spectrom 32:1312–1319.  https://doi.org/10.1039/c7ja00147aCrossRefGoogle Scholar
  226. Weyrauch M, Zipfel J, Weyer S (2019) Origin of metal from CB chondrites in an impact plume-a combined study of Fe and Ni isotope composition and trace element abundances. GCA 246:123–137Google Scholar
  227. Wiesli RA, Beard BL, Taylor LA, Johnson CM (2003) Space weathering processes on airless bodies: Fe isotope fractionation in the lunar regolith. Earth Planet Sci Lett 216:457–465.  https://doi.org/10.1016/S0012-821X(03)00552-1CrossRefGoogle Scholar
  228. Williams HM, Archer C (2011) Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies. Geochim Cosmochim Acta 75:3166–3178.  https://doi.org/10.1016/j.gca.2011.03.010CrossRefGoogle Scholar
  229. Williams HM, Bizimis M (2014) Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet Sci Lett 404:396–407.  https://doi.org/10.1016/j.epsl.2014.07.033CrossRefGoogle Scholar
  230. Williams HM, Markowski A, Quitté G, Halliday AN, Teutsch N, Levasseur S (2006) Fe isotope fractionation in iron meteorites: new insights into metal-sulphide segregation and planetary accretion. Earth Planet Sci Lett 250:486–500.  https://doi.org/10.1016/j.epsl.2006.08.013CrossRefGoogle Scholar
  231. Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science (80-) 304:1656–1659.  https://doi.org/10.1126/science.1095679CrossRefGoogle Scholar
  232. Williams HM, Nielsen SG, Renac C, Griffin WL, O’Reilly SY, McCammon CA, Pearson N, Viljoen F, Alt JC, Halliday AN (2009) Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth Planet Sci Lett 283:156–166.  https://doi.org/10.1016/j.epsl.2009.04.011CrossRefGoogle Scholar
  233. Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations in mantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235:435–452.  https://doi.org/10.1016/j.epsl.2005.04.020CrossRefGoogle Scholar
  234. Williams HM, Prytulak J, Woodhead JD, Kelley KA, Brounce M, Plank T (2018) Interplay of crystal fractionation, sulfide saturation and oxygen fugacity on the iron isotope composition of arc lavas: an example from the Marianas. Geochim Cosmochim Acta 226:224–243.  https://doi.org/10.1016/j.gca.2018.02.008CrossRefGoogle Scholar
  235. Williams HM, Wood BJ, Wade J, Frost DJ, Tuff J (2012) Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet Sci Lett 321–322:54–63.  https://doi.org/10.1016/j.epsl.2011.12.030CrossRefGoogle Scholar
  236. Woosley SE, Heger A, Weaver TA (2002) The evolution and explosion of massive stars. Rev Mod Phys 74:1015–1071.  https://doi.org/10.1063/1.2943638CrossRefGoogle Scholar
  237. Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J 101:181–235CrossRefGoogle Scholar
  238. Wu H, He Y, Bao L, Zhu C, Li S (2017) Mineral composition control on inter-mineral iron isotopic fractionation in granitoids. Geochim Cosmochim Acta 198:208–217.  https://doi.org/10.1016/j.gca.2016.11.008CrossRefGoogle Scholar
  239. Wu H, He Y, Teng F-Z, Ke S, Hou Z, Li S (2018) Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary. Geochim Cosmochim Acta 222:671–684.  https://doi.org/10.1016/j.gca.2017.11.010CrossRefGoogle Scholar
  240. Xia Y, Li S, Huang F (2017) Iron and Zinc isotope fractionation during magmatism in the continental crust: Evidence from bimodal volcanic rocks from Hailar basin, NE China. Geochim Cosmochim Acta 213:35–46.  https://doi.org/10.1016/j.gca.2017.06.018CrossRefGoogle Scholar
  241. Xu L-J, He Y, Wang S-J, Wu H, Li S (2017) Iron isotope fractionation during crustal anatexis: constraints from migmatites from the Dabie orogen, Central China. Lithos 284–285:171–179.  https://doi.org/10.1016/j.lithos.2017.04.005CrossRefGoogle Scholar
  242. Yang H, Lin J-F, Hu MY, Roskosz M, Bi W, Zhao J, Alp EE, Liu J, Liu J, Wentzowitch RM, Okuchi T, Dauphas N (2019) Iron isotopic fractionation in mineral phases from Earth’s lower mantle: did terrestrial magma ocean crystallization fractionate iron isotopes? Earth Planet Sci Lett 506:113–122.  https://doi.org/10.1016/j.epsl.2018.10.034CrossRefGoogle Scholar
  243. Zambardi T, Lundstrom CC, Li X, McCurry M (2014) Fe and Si isotope variations at Cedar Butte volcano; insight into magmatic differentiation. Earth Planet Sci Lett 405:169–179.  https://doi.org/10.1016/j.epsl.2014.08.020CrossRefGoogle Scholar
  244. Zambardi T, Poitrasson F, Corgne A, Méheut M, Quitté G, Anand M (2013) Silicon isotope variations in the inner solar system: implications for planetary formation, differentiation and composition. Geochim Cosmochim Acta 121:67–83.  https://doi.org/10.1016/j.gca.2013.06.040CrossRefGoogle Scholar
  245. Zhao X-M, Zhang H-F, Zhu X-K, Zhu B, Cao H (2015) Effects of melt percolation on iron isotopic variation in peridotites from Yangyuan, North China Craton. Chem Geol 401:96–110.  https://doi.org/10.1016/j.chemgeo.2015.02.031CrossRefGoogle Scholar
  246. Zhao X, Zhang H, Zhu X, Tang S, Tang Y (2010) Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism. Contrib to Mineral Petrol 160:1–14.  https://doi.org/10.1007/s00410-009-0461-yCrossRefGoogle Scholar
  247. Zhao X, Zhang H, Zhu X, Tang S, Yan B (2012) Iron isotope evidence for multistage melt–peridotite interactions in the lithospheric mantle of eastern China. Chem Geol 292–293:127–139.  https://doi.org/10.1016/j.chemgeo.2011.11.016CrossRefGoogle Scholar
  248. Zhao X, Zhang Z, Huang S, Liu Y, Li X, Zhang H (2017) Coupled extremely light Ca and Fe isotopes in peridotites. Geochim Cosmochim Acta 208:368–380.  https://doi.org/10.1016/j.gca.2017.03.024CrossRefGoogle Scholar
  249. Zhu B, Zhang HF, Zhao XM, He YS (2016) Iron isotope fractionation during skarn-type alteration: implications for metal source in the Han-Xing iron skarn deposit. Ore Geol Rev 74:139–150.  https://doi.org/10.1016/j.oregeorev.2015.11.001CrossRefGoogle Scholar
  250. Zhu D, Bao H, Liu Y (2015) Non-traditional stable isotope behaviors in immiscible silica-melts in a mafic magma chamber. Sci Rep 5:1–10.  https://doi.org/10.1038/srep17561CrossRefGoogle Scholar
  251. Zhu XK, Guo Y, O’nions RK, Young ED, Ash RD (2001) Isotopic homogeneity of iron in the early solar nebula. Nature 412:311–313CrossRefGoogle Scholar
  252. Zhu XK, Guo Y, Williams RJP, O’nions RK, Matthews A, Belshaw NS, Canters GW, De Waal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopes. Earth Planet Sci Lett 200:47–62CrossRefGoogle Scholar
  253. Zhu ZY, Jiang SY, Mathur R, Cook NJ, Yang T, Wang M, Ma L, Ciobanu CL (2018) Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone–a model for pyrite in gold deposits from the Jiaodong Peninsula, East China. Geochim Cosmochim Acta 222:94–116.  https://doi.org/10.1016/j.gca.2017.10.001CrossRefGoogle Scholar
  254. Zipfel J, Weyer S (2007) In situ analyses of Fe isotopes in zoned metall grains of Hammadah al Hamra 237. Lunar Planet, Sci Conf 38Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations