Advertisement

Fe Isotope Fractionation Factors

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

The Fe isotope system is used in a variety of Earth and planetary science fields, including high- and low-temperature applications. We have a significant understanding of the controls on Fe isotope fractionation and rates of Fe isotope exchange between different Fe-bearing species. Various studies have characterized Fe isotope fractionation factors and isotope exchange kinetics by empirical methods, including experimental studies and analysis of well-characterized natural samples.

References

  1. Amor M, Busigny V, Louvat P, Gelabert A, Cartigny P, Durand-Dubief M, Ona-Nguema G, Alphandery E, Chebbi I, Guyot F (2016) Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria. Science 352(6286):705–708.  https://doi.org/10.1126/science.aad7632CrossRefGoogle Scholar
  2. Anbar AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O)(3+)(6) and Fe(H2O)(2+)(6): implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69(4):825–837.  https://doi.org/10.1016/j.gca.2004.06.012CrossRefGoogle Scholar
  3. Anbar AD, Roe JE, Barling J, Nealson KH (2000) Nonbiological fractionation of iron isotopes. Science 288(5463):126–128CrossRefGoogle Scholar
  4. Balci N, Bullen TD, Witte-Lien K, Shanks WC, Motelica M, Mandernack KW (2006) Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochim Cosmochim Acta 70(3):622–639.  https://doi.org/10.1016/j.gca.2005.09.025CrossRefGoogle Scholar
  5. Beard BL, Handler RM, Scherer MM, Wu LL, Czaja AD, Heimann A, Johnson CM (2010) Iron isotope fractionation between aqueous ferrous iron and goethite. Earth Planet Sci Lett 295(1–2):241–250.  https://doi.org/10.1016/j.epsl.2010.04.006CrossRefGoogle Scholar
  6. Beard BL, Johnson CM, Cox L, Sun H, Nealson KH, Aguilar C (1999) Iron isotope biosignatures. Science 285(5435):1889–1892.  https://doi.org/10.1126/science.285.5435.1889CrossRefGoogle Scholar
  7. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117.  https://doi.org/10.1016/s0009-2541(02)00390-xCrossRefGoogle Scholar
  8. Bertaut EF, Burlet P, chappert J (1965) Sur l’absence d’ordre magnetique dans la forme quadratique de FeS. Solid State Commun 3:335–338CrossRefGoogle Scholar
  9. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium contants for isotopic exchange reactions. J Chem Phys 15:261–267CrossRefGoogle Scholar
  10. Blanchard M, Balan E, Schauble EA (2017) Equilibrium fractionation of non-traditional isotopes: a molecular modeling perspective. In: Teng FZ, Watkins J, Dauphas N (eds) Non-traditional stable isotopes, vol 82. Reviews in Mineralogy & Geochemistry, pp 27–63.  https://doi.org/10.2138/rmg.2017.82.2CrossRefGoogle Scholar
  11. Blanchard M, Dauphas N, Hu MY, Roskosz M, Alp EE, Golden DC, Sio CK, Tissot FLH, Zhao J, Gao L, Morris RV, Fornace M, Floris A, Lazzeri M, Balan E (2015) Reduced partition function ratios of iron and oxygen in goethite. Geochim Cosmochim Acta 151:19–33.  https://doi.org/10.1016/j.gca.2014.12.006CrossRefGoogle Scholar
  12. Blanchard M, Poitrasson F, Meheut M, Lazzeri M, Mauri F, Balan E (2009) Iron isotope fractionation between pyrite (FeS2), hematite (Fe2O3) and siderite (FeCO3): a first-principles density functional theory study. Geochim Cosmochim Acta 73(21):6565–6578.  https://doi.org/10.1016/j.gca.2009.07.034CrossRefGoogle Scholar
  13. Blanchard M, Poitrasson F, Meheut M, Lazzeri M, Mauri F, Balan E (2012) Comment on “New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems” by VB Polyakov and DM Soultanov. Geochim Cosmochim Acta 87:356–359.  https://doi.org/10.1016/j.gca.2012.01.048CrossRefGoogle Scholar
  14. Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD (2014) Effect of solution and solid-phase conditions on the Fe(II)-Accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environ Sci Technol 48(10):5477–5485.  https://doi.org/10.1021/es4043275CrossRefGoogle Scholar
  15. Brantley SL, Liermann LJ, Guynn RL, Anbar A, Icopini GA, Barling J (2004) Fe isotopic fractionation during mineral dissolution with and without bacteria. Geochim Cosmochim Acta 68(15):3189–3204.  https://doi.org/10.1016/j.gca.2004.01.023CrossRefGoogle Scholar
  16. Buchachenko AL (2001) Magnetic isotope effect: nuclear spin control of chemical reactions. J Phys Chem A 105(44):9995–10011.  https://doi.org/10.1021/jp011261dCrossRefGoogle Scholar
  17. Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236(1–2):430–442.  https://doi.org/10.1016/j.epsl.2005.05.022CrossRefGoogle Scholar
  18. Cao XB, Bao HM (2017) Redefining the utility of the three-isotope method. Geochim Cosmochim Acta 212:16–32.  https://doi.org/10.1016/j.gca.2017.05.028CrossRefGoogle Scholar
  19. Chapman JB, Weiss DJ, Shan Y, Lemburger M (2009) Iron isotope fractionation during leaching of granite and basalt by hydrochloric and oxalic acids. Geochim Cosmochim Acta 73(5):1312–1324.  https://doi.org/10.1016/j.gca.2008.11.037CrossRefGoogle Scholar
  20. Chen CM, Kukkadapu R, Sparks DL (2015) Influence of coprecipitated organic matter on Fe-(aq)(2+)-Catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environ Sci Technol 49(18):10927–10936.  https://doi.org/10.1021/acs.est.5b02448CrossRefGoogle Scholar
  21. Chen KY, Chen TY, Chan YT, Cheng CY, Tzou YM, Liu YT, Teah HY (2016) Stabilization of natural organic matter by short-range-order iron hydroxides. Environ Sci Technol 50(23):12612–12620.  https://doi.org/10.1021/acs.est.6b02793CrossRefGoogle Scholar
  22. Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416(6882):767–769.  https://doi.org/10.1038/416767aCrossRefGoogle Scholar
  23. Clayton RN, Kieffer SW (1991) Oxygen isotopic thermometer calibrations. Spec Publ—Geochem Soc 3:3–10Google Scholar
  24. Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, New York, p 1999Google Scholar
  25. Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68(6):1227–1242.  https://doi.org/10.1016/j.gca.2003.09.011CrossRefGoogle Scholar
  26. Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol 39(17):6698–6704.  https://doi.org/10.1021/es0505346CrossRefGoogle Scholar
  27. Crosby HA, Roden EE, Johnson CM, Beard BL (2007) The mechanisms of iron isotope fractionation produced during dissimilatory Fe(III) reduction by Shewanella putrefaciens and Geobacter sulfurreducens. Geobiology 5(2):169–189.  https://doi.org/10.1111/j.1472-4669.2007.00103.xCrossRefGoogle Scholar
  28. Dauphas N, John SG, Rouxel OJ (2017) Iron isotope systematics. Rev Miner Geochem 82:415–510.  https://doi.org/10.2138/rmg.2017.82.11CrossRefGoogle Scholar
  29. Dauphas N, Roskosz M, Alp EE, Golden DC, Sio CK, Tissot FLH, Hu MY, Zhao J, Gao L, Morris RV (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: Application to goethite and jarosite. Geochim Cosmochim Acta 94:254–275.  https://doi.org/10.1016/j.gca.2012.06.013CrossRefGoogle Scholar
  30. Dauphas N, Roskosz M, Alp EE, Neuville DR, Hu MY, Sio CK, Tissot FLH, Zhao J, Tissandiere L, Medard E, Cordier C (2014) Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett 398:127–140.  https://doi.org/10.1016/j.epsl.2014.04.033CrossRefGoogle Scholar
  31. Dideriksen K, Baker JA, Stipp SLS (2008) Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B. Earth Planet Sci Lett 269(1–2):280–290.  https://doi.org/10.1016/j.epsl.2008.02.022CrossRefGoogle Scholar
  32. Doelsch E, Masion A, Rose J, Stone WEE, Bottero JY, Bertsch PM (2003) Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. Colloids Surf a-Physicochem Eng Asp 217(1–3):121–128.  https://doi.org/10.1016/s0927-7757(02)00566-6CrossRefGoogle Scholar
  33. Doelsch E, Rose J, Masion A, Bottero JY, Nahon D, Bertsch PM (2000) Speciation and crystal chemistry of iron(III) chloride hydrolyzed in the presence of SiO4 ligands. 1. An FeK-edge EXAFS study. Langmuir 16(10):4726–4731.  https://doi.org/10.1021/la991378hCrossRefGoogle Scholar
  34. Domagal-Goldman SD, Kubicki JD (2008) Density functional theory predictions of equilibrium isotope fractionation of iron due to redox changes and organic complexation. Geochim Cosmochim Acta 72(21):5201–5216.  https://doi.org/10.1016/j.gca.2008.05.066CrossRefGoogle Scholar
  35. Domagal-Goldman SD, Paul KW, Sparks DL, Kubicki JD (2009) Quantum chemical study of the Fe(III)-desferrioxamine B siderophore complex-electronic structure, vibrational frequencies, and equilibrium Fe-isotope fractionation. Geochim Cosmochim Acta 73(1):1–12.  https://doi.org/10.1016/j.gca.2008.09.031CrossRefGoogle Scholar
  36. Dove MT (1993) Introduction to lattice dynamics. Cambridge University Press, Cambridge, New York, p 1993CrossRefGoogle Scholar
  37. Eusterhues K, Wagner FE, Hausler W, Hanzlik M, Knicker H, Totsche KU, Kogel-Knabner I, Schwertmann U (2008) Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and mossbauer spectroscopy. Environ Sci Technol 42(21):7891–7897.  https://doi.org/10.1021/es800881wCrossRefGoogle Scholar
  38. Fortney NW, He S, Converse BJ, Beard BL, Johnson CM, Boyd ES, Roden EE (2016) Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park. Geobiology 14(3):255–275.  https://doi.org/10.1111/gbi.12173CrossRefGoogle Scholar
  39. Frierdich AJ, Beard BL, Reddy TR, Scherer MM, Johnson CM (2014a) Iron isotope fractionation between aqueous Fe(II) and goethite revisited: new insights based on a multi-direction approach to equilibrium and isotopic exchange rate modification. Geochim Cosmochim Acta 139:383–398.  https://doi.org/10.1016/j.gca.2014.05.001CrossRefGoogle Scholar
  40. Frierdich AJ, Beard BL, Rosso KM, Scherer MM, Spicuzza MJ, Valley JW, Johnson CM (2015) Low temperature, non-stoichiometric oxygen-isotope exchange coupled to Fe(II)-goethite interactions. Geochim Cosmochim Acta 160:38–54.  https://doi.org/10.1016/j.gca.2015.03.029CrossRefGoogle Scholar
  41. Frierdich AJ, Beard BL, Scherer MM, Johnson CM (2014b) Determination of the Fe(II)(aq)-magnetite equilibrium iron isotope fractionation factor using the three-isotope method and a multi-direction approach to equilibrium. Earth Planet Sci Lett 391:77–86.  https://doi.org/10.1016/j.epsl.2014.01.032CrossRefGoogle Scholar
  42. Frierdich AJ, Nebel O, Beard BL, Johnson CM (2019) Iron isotope exchange and fractionation between hematite (alpha-Fe2O3) a and aqueous Fe(II): a combined three-isotope and reversal-approach to equilibrium study. Geochim Cosmochim Acta 245:207–221.  https://doi.org/10.1016/j.gca.2018.10.033CrossRefGoogle Scholar
  43. Fujii T, Moynier F, Blichert-Toft J, Albarede F (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu, and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576.  https://doi.org/10.1016/j.gca.2014.05.051CrossRefGoogle Scholar
  44. Fujii T, Moynier F, Telouk P, Albarede F (2006) Isotope fractionation of iron(III) in chemical exchange reactions using solvent extraction with crown ether. J Phys Chem A 110(38):11108–11112.  https://doi.org/10.1021/jp063179uCrossRefGoogle Scholar
  45. Gorski CA, Fantle MS (2017) Stable mineral recrystallization in low temperature aqueous systems: a critical review. Geochim Cosmochim Acta 198:439–465.  https://doi.org/10.1016/j.gca.2016.11.013CrossRefGoogle Scholar
  46. Gorski CA, Handler RM, Beard BL, Pasakarnis T, Johnson CM, Scherer MM (2012) Fe atom exchange between aqueous Fe2 + and magnetite. Environ Sci Technol 46(22):12399–12407.  https://doi.org/10.1021/es204649aCrossRefGoogle Scholar
  47. Guilbaud R, Butler IB, Ellam RM (2011a) Abiotic pyrite formation produces a large Fe isotope fractionation. Science 332(6037):1548–1551.  https://doi.org/10.1126/science.1202924CrossRefGoogle Scholar
  48. Guilbaud R, Butler IB, Ellam RM, Rickard D (2010) Fe isotope exchange between Fe(II)(aq) and nanoparticulate mackinawite (FeSm) during nanoparticle growth. Earth Planet Sci Lett 300(1–2):174–183.  https://doi.org/10.1016/j.epsl.2010.10.004CrossRefGoogle Scholar
  49. Guilbaud R, Butler IB, Ellam RM, Rickard D, Oldroyd A (2011b) Experimental determination of the equilibrium Fe isotope fractionation between Fe-aq(2 +) and FeSm (mackinawite) at 25 and 2 ℃. Geochim Cosmochim Acta 75(10):2721–2734.  https://doi.org/10.1016/j.gca.2011.02.023CrossRefGoogle Scholar
  50. Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between aqueous Fe(II) and goethite: an fe isotope tracer study. Environ Sci Technol 43(4):1102–1107.  https://doi.org/10.1021/es802402mCrossRefGoogle Scholar
  51. Handler RM, Frierdich AJ, Johnson CM, Rosso KM, Beard BL, Wang CM, Latta DE, Neumann A, Pasakarnis T, Premaratne W, Scherer MM (2014) Fe(II)-Catalyzed recrystallization of goethite revisited. Environ Sci Technol 48(19):11302–11311.  https://doi.org/10.1021/es503084uCrossRefGoogle Scholar
  52. Hansel CM, Benner SG, Fendorf S (2005) Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39(18):7147–7153.  https://doi.org/10.1021/es050666zCrossRefGoogle Scholar
  53. Hansel CM, Benner SG, Neiss J, Dohnalkova A, Kukkadapu RK, Fendorf S (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim Cosmochim Acta 67(16):2977–2992.  https://doi.org/10.1016/s0016-7037(03)00276-xCrossRefGoogle Scholar
  54. Henneberry YK, Kraus TEC, Nico PS, Horwath WR (2012) Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions. Org Geochem 48:81–89.  https://doi.org/10.1016/j.orggeochem.2012.04.005CrossRefGoogle Scholar
  55. Hill PS, Schauble EA (2008) Modeling the effects of bond environment on equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 72(8):1939–1958.  https://doi.org/10.1016/j.gca.2007.12.023CrossRefGoogle Scholar
  56. Hill PS, Schauble EA, Shahar A, Tonui E, Young ED (2009) Experimental studies of equilibrium iron isotope fractionation in ferric aquo-chloro complexes. Geochim Cosmochim Acta 73(8):2366–2381.  https://doi.org/10.1016/j.gca.2009.01.016CrossRefGoogle Scholar
  57. Hill PS, Schauble EA, Young ED (2010) Effects of changing solution chemistry on Fe3+/Fe2+ isotope fractionation in aqueous Fe–Cl solutions. Geochim Cosmochim Acta 74(23):6669–6689.  https://doi.org/10.1016/j.gca.2010.08.038CrossRefGoogle Scholar
  58. Icopini GA, Anbar AD, Ruebush SS, Tien M, Brantley SL (2004) Iron isotope fractionation during microbial reduction of iron: the importance of adsorption. Geology 32(3):205–208.  https://doi.org/10.1130/g20184.1CrossRefGoogle Scholar
  59. Jang JH, Dempsey BA, Catchen GL, Burgos WD (2003) Effects of Zn(II), Cu(II), Mn(II), Fe(II), NO3-, or SO42- at pH 6.5 and 8.5 on transformations of hydrous ferric oxide (HFO) as evidenced by Mossbauer spectroscopy. Colloids Surf a-Physicochem Eng Asp 221 (1–3):55–68.  https://doi.org/10.1016/s0927-7757(03)00134-1CrossRefGoogle Scholar
  60. Johnson CM, Beard BL, Roden EE, Newman DK, Nealson KH (2004) Isotopic constraints on biogeochemical cycling of Fe. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes, vol 55. Reviews in Mineralogy & Geochemistry, pp 359–408.  https://doi.org/10.2138/gsrmg.55.1.359CrossRefGoogle Scholar
  61. Johnson CM, Roden EE, Welch SA, Beard BL (2005) Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 69(4):963–993.  https://doi.org/10.1016/j.gca.2004.06.043CrossRefGoogle Scholar
  62. Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth Planet Sci Lett 195(1–2):141–153.  https://doi.org/10.1016/s0012-821x(01)00581-7CrossRefGoogle Scholar
  63. Joshi P, Fantle MS, Larese-Casanova P, Gorski CA (2017) Susceptibility of Goethite to Fe2+ -Catalyzed Recrystallization over time. Environ Sci Technol 51(20):11681–11691.  https://doi.org/10.1021/acs.est.7b02603CrossRefGoogle Scholar
  64. Joshi P, Gorski CA (2016) Anisotropic morphological changes in goethtie during Fe2+-catalyzed recrystalliation. Environ Sci Technol 50:7315–7324CrossRefGoogle Scholar
  65. Kappler A, Johnson CM, Crosby HA, Beard BL, Newman DK (2010) Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochim Cosmochim Acta 74(10):2826–2842.  https://doi.org/10.1016/j.gca.2010.02.017CrossRefGoogle Scholar
  66. Kiczka M, Wiederhold JG, Frommer J, Kraemer SM, Bourdon B, Kretzschmar R (2010) Iron isotope fractionation during proton- and ligand-promoted dissolution of primary phyllosilicates. Geochim Cosmochim Acta 74(11):3112–3128.  https://doi.org/10.1016/j.gca.2010.02.018CrossRefGoogle Scholar
  67. Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals, 5. Applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Rev Geophys Space Phys 20(4):827–849.  https://doi.org/10.1029/RG020i004p00827CrossRefGoogle Scholar
  68. Levin NE, Raub TD, Dauphas N, Eiler JM (2014) Triple oxygen isotope variations in sedimentary rocks. Geochim Cosmochim Acta 139:173–189.  https://doi.org/10.1016/j.gca.2014.04.034CrossRefGoogle Scholar
  69. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55(2):259–287Google Scholar
  70. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. In: Poole RK (ed) Advances in microbial physiology, vol. 49. Advances in Microbial Physiology, pp 219–286.  https://doi.org/10.1016/s0065-2911(04)49005-5Google Scholar
  71. Lovley DR, Phillips EJP (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the fresh-water tidal Potomac river. Appl Environ Microbiol 52(4):751–757CrossRefGoogle Scholar
  72. Lovley DR, Phillips EJP (1986b) Organic-matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51(4):683–689CrossRefGoogle Scholar
  73. Lovley DR, Phillips EJP, Lonergan DJ (1991) Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments. Environ Sci Technol 25(6):1062–1067.  https://doi.org/10.1021/es00018a007CrossRefGoogle Scholar
  74. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. In: Poole RK (ed) Advances in microbial physiology, vol 59. Advances in Microbial Physiology, pp 1–100.  https://doi.org/10.1016/b978-0-12-387661-4.00004-5Google Scholar
  75. Mandernack KW, Bazylinski DA, Shanks WC, Bullen TD (1999) Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria. Science 285(5435):1892–1896.  https://doi.org/10.1126/science.285.5435.1892CrossRefGoogle Scholar
  76. Mansor M, Fantle MS (2019) A novel framework for interpreting pyrite-based Fe isotope records of the past. Geochim Cosmochim Acta 253:39–62CrossRefGoogle Scholar
  77. Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250 ℃ and 15 kbar. Geochim Cosmochim Acta 42(2):173–182.  https://doi.org/10.1016/0016-7037(78)90130-8CrossRefGoogle Scholar
  78. Matthews A, Goldsmith JR, Clayton RN (1983) On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated-temperatures and pressures. Geol Soc Am Bull 94(3):396–412.  https://doi.org/10.1130/0016-7606(1983)94%3c396:Otmako%3e2.0.Co;2CrossRefGoogle Scholar
  79. Matthews A, Zhu XK, O’Nions K (2001) Kinetic iron stable isotope fractionation between iron (-II) and (-III) complexes in solution. Earth Planet Sci Lett 192(1):81–92.  https://doi.org/10.1016/s0012-821x(01)00432-0CrossRefGoogle Scholar
  80. Mikutta C, Wiederhold JG, Cirpka OA, Hofstetter TB, Bourdon B, Von Gunten U (2009) Iron isotope fractionation and atom exchange during sorption of ferrous iron to mineral surfaces. Geochim Cosmochim Acta 73(7):1795–1812.  https://doi.org/10.1016/j.gca.2009.01.014CrossRefGoogle Scholar
  81. Miller MF (2002) Isotopic fractionation and the quantification of O-17 anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66(11):1881–1889.  https://doi.org/10.1016/s0016-7037(02)00832-3CrossRefGoogle Scholar
  82. Mineev SD, Polyakov VB, Permyakov YV (2007) Equilibrium iron isotope fractionation factors for magnetite from Mossbauer spectroscopy and inelastic nuclear resonant X-ray scattering data. Geochim Cosmochim Acta 71(15):A669–A669Google Scholar
  83. Morgan JLL, Wasylenki LE, Nuester J, Anbar AD (2010) Fe Isotope Fractionation during Equilibration of Fe-Organic Complexes. Environ Sci Technol 44(16):6095–6101.  https://doi.org/10.1021/es100906zCrossRefGoogle Scholar
  84. Moynier F, Fujii T, Wang K, Foriel J (2013) Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants. CR Geosci 345(5–6):230–240.  https://doi.org/10.1016/j.crte.2013.05.003CrossRefGoogle Scholar
  85. Mulholland DS, Poitrasson F, Shirokova LS, Gonzalez AG, Pokrovsky OS, Boaventura GR, Vieira LC (2015) Iron isotope fractionation during Fe(II) and Fe(III) adsorption on cyanobacteria. Chem Geol 400:24–33.  https://doi.org/10.1016/j.chemgeo.2015.01.017CrossRefGoogle Scholar
  86. Neumann A, Wu LL, Li WQ, Beard BL, Johnson CM, Rosso KM, Frierdich AJ, Scherer MM (2015) Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Environ Sci Technol 49(5):2786–2795.  https://doi.org/10.1021/es504984qCrossRefGoogle Scholar
  87. Northrop DA, Clayton RN (1966) Oxygen-isotope fractionations in systems containing dolomite. J Geol 74(2):174–196.  https://doi.org/10.1086/627153CrossRefGoogle Scholar
  88. O’Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Mineral 16:1–40Google Scholar
  89. Ottonello G, Zuccolini MV (2008) The iron-isotope fractionation dictated by the carboxylic functional: an ab-initio investigation. Geochim Cosmochim Acta 72(24):5920–5934.  https://doi.org/10.1016/j.gca.2008.09.027CrossRefGoogle Scholar
  90. Ottonello G, Zuccolini MV (2009) Ab-initio structure, energy and stable Fe isotope equilibrium fractionation of some geochemically relevant H–O–Fe complexes. Geochim Cosmochim Acta 73(21):6447–6469.  https://doi.org/10.1016/j.gca.2009.06.034CrossRefGoogle Scholar
  91. Pedersen HD, Postma D, Jakobsen R, Larsen O (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69(16):3967–3977.  https://doi.org/10.1016/j.gca.2005.03.016CrossRefGoogle Scholar
  92. Percak-Dennett EM, Beard BL, Xu H, Konishi H, Johnson CM, Roden EE (2011) Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology 9(3):205–220.  https://doi.org/10.1111/j.1472-4669.2011.00277.xCrossRefGoogle Scholar
  93. Polyakov VB (1997) Equilibrium fractionation of the iron isotopes: estimation from Mossbauer spectroscopy data. Geochim Cosmochim Acta 61(19):4213–4217.  https://doi.org/10.1016/s0016-7037(97)00204-4CrossRefGoogle Scholar
  94. Polyakov VB, Clayton RN, Horita J, Mineev SD (2007) Equilibrium iron isotope fractionation factors of minerals: reevaluation from the data of nuclear inelastic resonant X-ray scattering and Mossbauer spectroscopy. Geochim Cosmochim Acta 71(15):3833–3846.  https://doi.org/10.1016/j.gca.2007.05.019CrossRefGoogle Scholar
  95. Polyakov VB, Mineev SD (2000) The use of Mossbauer spectroscopy in stable isotope geochemistry. Geochim Cosmochim Acta 64(5):849–865.  https://doi.org/10.1016/s0016-7037(99)00329-4CrossRefGoogle Scholar
  96. Polyakov VB, Mineev SD, Clayton RN, Hu G, Mineev KS (2005) Determination of tin equilibrium isotope fractionation factors from synchrotron radiation experiments. Geochim Cosmochim Acta 69(23):5531–5536.  https://doi.org/10.1016/j.gca.2005.07.010CrossRefGoogle Scholar
  97. Polyakov VB, Osadchii EG, Voronin MV, Osadchii VO, Sipavina LV, Chareev DA, Tyurin AV, Gurevich VM, Gavrichev KS (2019) Iron and Sulfur isotope factors of pyrite: data from experimental mossbauer spectroscopy and heat capacity. Geochem Int 57(4):369–383.  https://doi.org/10.1134/s0016702919040098CrossRefGoogle Scholar
  98. Polyakov VB, Soultanov DM (2011) New data on equilibrium iron isotope fractionation among sulfides: Constraints on mechanisms of sulfide formation in hydrothermal and igneous systems. Geochim Cosmochim Acta 75(7):1957–1974.  https://doi.org/10.1016/j.gca.2011.01.019CrossRefGoogle Scholar
  99. Polyakov VB, Soultanov DM (2012) Response to the comment by M Blanchard, F Poitrasson, M Me´heut, M Lazzeri, F Mauri, E Balan on “New data on equilibrium iron isotope fractionation among sulfides: constraints on mechanisms of sulfide formation in hydrothermal and igneous systems” published in Geochim. Cosmochim Acta 75:1957–1974. Geochim Cosmochim Acta 87:360–366CrossRefGoogle Scholar
  100. Poulson RL, Johnson CM, Beard BL (2005) Iron isotope exchange kinetics at the nanoparticulate ferrihydrite surface. Am Miner 90(4):758–763.  https://doi.org/10.2138/am.2005.1802CrossRefGoogle Scholar
  101. Reddy TR, Frierdich AJ, Beard BL, Johnson CM (2015) The effect of pH on stable iron isotope exchange and fractionation between aqueous Fe(II) and goethite. Chem Geol 397:118–127.  https://doi.org/10.1016/j.chemgeo.2015.01.018CrossRefGoogle Scholar
  102. Roden EE (2003) Fe(III) oxide reactivity toward biological versus chemical reduction. Environ Sci Technol 37(7):1319–1324.  https://doi.org/10.1021/es026038oCrossRefGoogle Scholar
  103. Roden EE (2006) Geochemical and microbiological controls on dissimilatory iron reduction. CR Geosci 338(6–7):456–467.  https://doi.org/10.1016/j.crte.2006.04.009CrossRefGoogle Scholar
  104. Roden EE, Urrutia MM (1999) Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environ Sci Technol 33(11):1847–1853.  https://doi.org/10.1021/es9809859CrossRefGoogle Scholar
  105. Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: Influence of oxide surface area and potential for cell growth. Environ Sci Technol 30(5):1618–1628.  https://doi.org/10.1021/es9506216CrossRefGoogle Scholar
  106. Roe JE, Anbar AD, Barling J (2003) Nonbiological fractionation of Fe isotopes; evidence of an equilibrium isotope effect. Chem Geol 195(1–4):69–85.  https://doi.org/10.1016/S0009-2541(02)00389-3CrossRefGoogle Scholar
  107. Roskosz M, Sio CKI, Dauphas N, Bi WL, Tissot FLH, Hu MY, Zhao JY, Alp EE (2015) Spinel-olivine-pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites. Geochim Cosmochim Acta 169:184–199.  https://doi.org/10.1016/j.gca.2015.07.035CrossRefGoogle Scholar
  108. Rumble D, Miller MF, Franchi IA, Greenwood RC (2007) Oxygen three-isotope fractionation lines in terrestrial silicate minerals: an inter-laboratory comparison of hydrothermal quartz and eclogitic garnet. Geochim Cosmochim Acta 71(14):3592–3600.  https://doi.org/10.1016/j.gca.2007.05.011CrossRefGoogle Scholar
  109. Rustad JR, Casey WH, Yin QZ, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+ (aq), Ca2+ (aq), and Fe2+ (aq) with carbonate minerals. Geochim Cosmochim Acta 74(22):6301–6323.  https://doi.org/10.1016/j.gca.2010.08.018CrossRefGoogle Scholar
  110. Salas EC, Berelson WM, Hammond DE, Kampf AR, Nealson KH (2009) The influence of carbon source on the products of dissimilatory iron reduction. Geomicrobiol J 26(7):451–462.  https://doi.org/10.1080/01490450903060806CrossRefGoogle Scholar
  111. Salas EC, Berelson WM, Hammond DE, Kampf AR, Nealson KH (2010) The impact of bacterial strain on the products of dissimilatory iron reduction. Geochim Cosmochim Acta 74(2):574–583.  https://doi.org/10.1016/j.gca.2009.10.039CrossRefGoogle Scholar
  112. Saunier G, Pokrovski GS, Poitrasson F (2011) First experimental determination of iron isotope fractionation between hematite and aqueous solution at hydrothermal conditions. Geochim Cosmochim Acta 75(21):6629–6654.  https://doi.org/10.1016/j.gca.2011.08.028CrossRefGoogle Scholar
  113. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Miner Geochem 55:65–111.  https://doi.org/10.2138/gsrmg.55.1.65CrossRefGoogle Scholar
  114. Schauble EA, Rossman GR, Taylor HP (2001) Theoretical estimates of equilibrium Fe-isotope fractionations from vibrational spectroscopy. Geochim Cosmochim Acta 65(15):2487–2497.  https://doi.org/10.1016/s0016-7037(01)00600-7CrossRefGoogle Scholar
  115. Shahar A, Elardo SM, Macris CA (2017) Equilibrium fractionation of non-traditional stable isotopes; an experimental perspective. Rev Miner Geochem 82:65–83.  https://doi.org/10.2138/rmg.2017.82.3CrossRefGoogle Scholar
  116. Shi BJ, Liu K, Wu LL, Li WQ, Smeaton CM, Beard BL, Johnson CM, Roden EE, Van Cappellen P (2016) Iron isotope fractionations reveal a finite bioavailable Fe pool for structural Fe(III) reduction in nontronite. Environ Sci Technol 50(16):8661–8669.  https://doi.org/10.1021/acs.est.6b02019CrossRefGoogle Scholar
  117. Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66(17):2995–3015.  https://doi.org/10.1016/s0016-7037(02)00902-xCrossRefGoogle Scholar
  118. Sun RY, Wang BL (2018) Iron isotope fractionation during uptake of ferrous ion by phytoplankton. Chem Geol 481:65–73.  https://doi.org/10.1016/j.chemgeo.2018.01.031CrossRefGoogle Scholar
  119. Swanner ED, Bayer T, Wu W, Hao L, Obst M, Sundman A, Byrne JM, Michel FM, Kleinhanns IC, Kappler A, Schoenberg R (2017) Iron Isotope fractionation during Fe(II) oxidation mediated by the oxygen-producing marine cyanobacterium synechococcus PCC 7002. Environ Sci Technol 51(9):4897–4906.  https://doi.org/10.1021/acs.est.6b05833CrossRefGoogle Scholar
  120. Swanner ED, Wu WF, Schoenberg R, Byrne J, Michel FM, Pan YX, Kappler A (2015) Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions. Geochim Cosmochim Acta 165:44–61.  https://doi.org/10.1016/j.gca.2015.05.024CrossRefGoogle Scholar
  121. Syverson DD, Borrok DM, Seyfried WE (2013) Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal conditions. Geochim Cosmochim Acta 122:170–183.  https://doi.org/10.1016/j.gca.2013.08.027CrossRefGoogle Scholar
  122. Syverson DD, Luhmann AJ, Tan CY, Borrok DM, Ding K, Seyfried WE (2017) Fe isotope fractionation between chalcopyrite and dissolved Fe during hydrothermal recrystallization: an experimental study at 350 ℃ and 500 bars. Geochim Cosmochim Acta 200:87–109.  https://doi.org/10.1016/j.gca.2016.12.002CrossRefGoogle Scholar
  123. Syverson DD, Pester NJ, Craddock PR, Seyfried WE (2014) Fe isotope fractionation during phase separation in the NaCl-H2O system: an experimental study with implications for seafloor hydrothermal vents. Earth Planet Sci Lett 406:223–232.  https://doi.org/10.1016/j.epsl.2014.09.020CrossRefGoogle Scholar
  124. Tangalos GE, Beard BL, Johnson CM, Alpers CN, Shelobolina ES, Xu H, Konishi H, Roden EE (2010) Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Geobiology 8(3):197–208.  https://doi.org/10.1111/j.1472-4669.2010.00237.xCrossRefGoogle Scholar
  125. Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Schink B (ed) Advances in microbial ecology, vol 16, pp 41–84CrossRefGoogle Scholar
  126. ThomasArrigo LK, Byrne JM, Kappler A, Kretzschmar R (2018) Impact of organic matter on Iron(II)-Catalyzed mineral transformations in ferrihydrite-organic matter coprecipitates. Environ Sci Technol 52(21):12316–12326.  https://doi.org/10.1021/acs.est.8b03206CrossRefGoogle Scholar
  127. ThomasArrigo LK, Mikutta C, Byrne J, Kappler A, Kretzschmar R (2017) Iron(II)-Catalyzed iron atom exchange and mineralogical changes in iron-rich organic freshwater flocs: an iron isotope tracer study. Environ Sci Technol 51(12):6897–6907.  https://doi.org/10.1021/acs.est.7b01495CrossRefGoogle Scholar
  128. Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, Lovley DR (2018) Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J 12(1):48–58.  https://doi.org/10.1038/ismej.2017.141CrossRefGoogle Scholar
  129. Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67(22):4231–4250.  https://doi.org/10.1016/s0016-7037(03)00266-7CrossRefGoogle Scholar
  130. Wiederhold JG, Kraemer SM, Teutsch N, Borer PM, Halliday AN, Kretzschmar R (2006) Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite. Environ Sci Technol 40(12):3787–3793.  https://doi.org/10.1021/es052228yCrossRefGoogle Scholar
  131. Wiesli RA, Beard BL, Braterman PS, Johnson CM, Saha SK, Sinha MP (2007) Iron isotope fractionation between liquid and vapor phases of iron pentacarbonyl. Talanta 71(1):90–96.  https://doi.org/10.1016/j.talanta.2006.03.026CrossRefGoogle Scholar
  132. Wiesli RA, Beard BL, Johnson CM (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chem Geol 211(3–4):343–362.  https://doi.org/10.1016/j.chemgeo.2004.07.002CrossRefGoogle Scholar
  133. Wu LL, Beard BL, Roden EE, Johnson CM (2009) Influence of pH and dissolved Si on Fe isotope fractionation during dissimilatory microbial reduction of hematite. Geochim Cosmochim Acta 73(19):5584–5599.  https://doi.org/10.1016/j.gca.2009.06.026CrossRefGoogle Scholar
  134. Wu LL, Beard BL, Roden EE, Johnson CM (2011) Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Environ Sci Technol 45(5):1847–1852.  https://doi.org/10.1021/es103171xCrossRefGoogle Scholar
  135. Wu LL, Beard BL, Roden EE, Kennedy CB, Johnson CM (2010) Stable Fe isotope fractionations produced by aqueous Fe(II)-hematite surface interactions. Geochim Cosmochim Acta 74(15):4249–4265.  https://doi.org/10.1016/j.gca.2010.04.060CrossRefGoogle Scholar
  136. Wu LL, Druschel G, Findlay A, Beard BL, Johnson CM (2012a) Experimental determination of iron isotope fractionations among Fe-aq(2+)-FeSaq-Mackinawite at low temperatures: implications for the rock record. Geochim Cosmochim Acta 89:46–61.  https://doi.org/10.1016/j.gca.2012.04.047CrossRefGoogle Scholar
  137. Wu LL, Percak-Dennett EM, Beard BL, Roden EE, Johnson CM (2012b) Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record. Geochim Cosmochim Acta 84:14–28.  https://doi.org/10.1016/j.gca.2012.01.007CrossRefGoogle Scholar
  138. Wu T, Griffin AM, Gorski CA, Shelobolina ES, Xu H, Kukkadapu RK, Roden EE (2017) Interactions between Fe(III)-oxides and Fe(III)-phyllosilicates during microbial reduction 2: natural subsurface sediments. Geomicrobiol J 34(3):231–241.  https://doi.org/10.1080/01490451.2016.1174758CrossRefGoogle Scholar
  139. Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66(6):1095–1104.  https://doi.org/10.1016/s0016-7037(01)00832-8CrossRefGoogle Scholar
  140. Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem Geol 395:176–195.  https://doi.org/10.1016/j.chemgeo.2014.12.013CrossRefGoogle Scholar
  141. Zachara JM, Kukkadapu RK, Fredrickson JK, Gorby YA, Smith SC (2002) Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiol J 19(2):179–207.  https://doi.org/10.1080/01490450252864271CrossRefGoogle Scholar
  142. Zheng X-Y, Beard BL, Reddy TR, Roden EE, Johnson CM (2016) Abiologic silicon isotope fractionation between aqueous Si and Fe(III)–Si gel in simulated Archean sea water; implications for Si isotope records in Precambrian sedimentary rocks. Geochim Cosmochim Acta 187:102–122.  https://doi.org/10.1016/j.gca.2016.05.012CrossRefGoogle Scholar
  143. Zhou Z, Latta DE, Noor N, Thompson A, Borch T, Scherer MM (2018) Fe(II)-Catalyzed transformation of organic matter-ferrihydrite coprecipitates: a closer look using Fe isotopes. Environ Sci Technol 52(19):11142–11150.  https://doi.org/10.1021/acs.est.8b03407CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations