Introduction and Overview

  • Clark JohnsonEmail author
  • Brian Beard
  • Stefan Weyer
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Iron has long been of great interest to geochemists given its high abundance and sensitivity to redox changes. Our goal in this chapter is to acquaint the reader with key concepts of Fe geochemistry and isotope geochemistry as a foundation for later chapters. Our short review of Fe geochemistry in Sect. 1.1 focuses on redox changes because these are responsible for some of the largest Fe isotope variations found in natural samples.


  1. Aller LH, McLaughlin DB (1965) Stellar structure. vol 8. The University of Chicago Press, Stars and Stellar SystemsGoogle Scholar
  2. Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Pancost RD, Regnier P (2013) Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci Rev 123:53–86. Scholar
  3. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195(1–4):87–117CrossRefGoogle Scholar
  4. Behrens H, Gaillard F (2006) Geochemical aspects of melts: volatiles and redox behavior. Elements 2:275–280CrossRefGoogle Scholar
  5. Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM (2011) The thermodynamic ladder in geomicrobiology. Am J Sci 311(3):183–210. Scholar
  6. Bézos A, Humler E (2005) The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725. Scholar
  7. Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Phys Chem 13:261–267CrossRefGoogle Scholar
  8. Blake R, Johnson DB (2000) Phylogenetic and biochemical diversity among acidophilic bacteria that respire on iron. In: Lovley DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, D.CGoogle Scholar
  9. Blanchard M, Balan E, Schauble EA (2017) Equilibrium fractionation of non-traditional isotopes: a molecular modeling perspective. Rev Mineral Geochem 82(1):27–63CrossRefGoogle Scholar
  10. Botcharnikov RE, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69(21):5071–5085. Scholar
  11. Brookins DG (1988) Eh-pH Diagrams for geochemistry. SpringerGoogle Scholar
  12. Canfield DE, Kristensen E, Thamdrup B (2005) Aquatic geomicrobiology, vol 48. Academic PressGoogle Scholar
  13. Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7(4):385–392. Scholar
  14. Canfield DE, Thamdrup B, Hansen JW (1993) The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta 57:3867–3883CrossRefGoogle Scholar
  15. Carmichael ISE (1991) The redox states of basic and silicis magmas: a reflection of their source regions? Contrib Miner Petrol 106:129–141CrossRefGoogle Scholar
  16. Chou I-M, Eugster HP (1977) Solubility of magnetite in supercritical chloride solutions. Am J Sci 277:1296–1314CrossRefGoogle Scholar
  17. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses. WileyGoogle Scholar
  18. Criss RE (1999) Principles of stable isotope distribution. Oxford University Press, USAGoogle Scholar
  19. Dauphas N, van Zuilen M, Wadhwa M, Davis AM, Marty B, Janney PE (2004) Clues from Fe isotope variations on the origin of early Archean BIFs from Greenland. Science 306:2077–2080CrossRefGoogle Scholar
  20. Fewell MP (1995) The atomic nuclide with the highest mean binding energy. Am J Phys 63(7):653–658CrossRefGoogle Scholar
  21. Gaillard F, Pichavant M, Scaillet B (2003) Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim Cosmochim Acta 67(22):4389–4409. Scholar
  22. Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the chemical society on March 17th 1937. J Chem Soc (Resumed) (0):655–673. Scholar
  23. Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107CrossRefGoogle Scholar
  24. Hansel CM, Benner SG, Fendorf S (2005) Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39:7147–7153CrossRefGoogle Scholar
  25. Hoefs J (2018) Stable isotope geochemistry. SpringerGoogle Scholar
  26. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  27. Johnson CM, Beard BL, Albarède F (2004a) Chapter 1. Overview and general concepts. In: Rosso JJ (ed) Geochemistry of non-tradtional stable isotopes. Reviews in mineralogy and geochemistryGoogle Scholar
  28. Johnson CM, Beard BL, Albarède F (2004b) Geochemistry of non-traditional stable isotopes, vol 55. Reviews in mineralogy and geochemistryGoogle Scholar
  29. Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257CrossRefGoogle Scholar
  30. Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607CrossRefGoogle Scholar
  31. Konhauser KO (2006) Introduction to geomicrobiology. Wiley-BlackwellGoogle Scholar
  32. Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ, Haugaard R, Lalonde SV, Partin CA, Oonk PBH, Tsikos H, Lyons TW, Bekker A, Johnson CM (2017) Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth Sci Rev 172:140–177. Scholar
  33. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108:82–92CrossRefGoogle Scholar
  34. Lee C-T (2016) Geochemical classification of elements. In: Encyclopedia of engineering geology. Encyclopedia of earth sciences series, pp 1–5. Scholar
  35. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315. Scholar
  36. Markl G, Marks MAW, Frost BR (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J Petrol 51(9):1831–1847. Scholar
  37. Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801CrossRefGoogle Scholar
  38. O’Neil JR (1986a) Appendix: terminology and standards In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes, vol 16. Reviews in mineralogy, pp 561–570Google Scholar
  39. O’Neil JR (1986b) Theoretical and experimental aspects of isotopic fractionation. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes, vol 16. Reviews in mineralogy, pp 1–40Google Scholar
  40. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  41. Okafor CD, Bowman JC, Hud NV, Glass JB, Williams LD (2018) Folding and catalysis near life’s origin: support for Fe2+ as a dominant divalent cation. In: Prebiotic chemistry and chemical evolution of nucleic acids. Nucleic acids and molecular biology, pp 227–243. Scholar
  42. Palme H, Lodders K, Jones A (2014) Solar system abundances of the elements. In: Treatise on geochemistry, pp 15–36. Scholar
  43. Rayleigh L (1902) On the distillation of binary mixtures. Philos Mag Ser 6(4):521–537CrossRefGoogle Scholar
  44. Righter K, Ghiorso MS (2012) Redox systematics of a magma ocean with variable pressure-temperature gradients and composition. Proc Natl Acad Sci U S A 109(30):11955–11960. Scholar
  45. Rustad JR, Casey WH, Yin Q-Z, Bylaska EJ, Felmy AR, Bogatko SA, Jackson VE, Dixon DA (2010) Isotopic fractionation of Mg2+ (aq), Ca2 + (aq), and Fe2+ (aq) with carbonate minerals. Geochim Cosmochim Acta 74(22):6301–6323. Scholar
  46. Schauble EA (2004) Applying stable isotope fractionation theory to new systems. In: Johnson CM, Beard BL, Albarède F (eds) Geochemistry of non-traditional stable isotopes, vol 56. Reviews in mineralogy and geochemistryGoogle Scholar
  47. Schwertmann U (1991) Solubility and dissolution of iron oxides. Plant Soil 130:1–25CrossRefGoogle Scholar
  48. Teng FZ, Dauphas N, Watkins JM (2017) Non-traditional stable isotopes: retrospective and prospective. Rev Mineral Geochem 82(1):1–26CrossRefGoogle Scholar
  49. Thamdrup B, Fossing H, Jørgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58(23):5115–5129CrossRefGoogle Scholar
  50. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (Lond):562–581Google Scholar
  51. Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250CrossRefGoogle Scholar
  52. Yang L, Steefel CI, Marcus MA, Bargar JR (2010) Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions. Environ Sci Technol 44:5469–5475CrossRefGoogle Scholar
  53. Zhu X-K, O’Nions RK, Guo Y, Reynolds BC (2000) Secular variation of iron isotopes in North Atlantic deep water. Science 287:2000–2002CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institute of MineralogyLeibniz Universität HannoverHannoverGermany

Personalised recommendations