Advertisement

Electron-Light Interactions Beyond Adiabatic Approximation

  • Nahid TalebiEmail author
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 228)

Abstract

Aligned with the technological developments of electron-based characterization techniques, our theoretical frameworks are yet to be adapted to the strong-laser and slow-electron regimes. More specifically, there exist certain domains where our adiabatic approximations might break down. This is practically important from several viewpoints: (i) in PPM, the shape and amplitude of electron beams are both strongly manipulated, in addition to their phase; (ii) even in free-space electron-light interactions, purely elastic approximations might appear to be a mere over-simplification (Kozak et al. in Nat Phys Lett, 2017 [1]); (iii) during the interaction of electron beams with gratings and light, electron bunching appears to be an additional mechanism to the electron acceleration, where both the acceleration and bunching mechanisms are controlled by the longitudinal broadening of the electron beam relative to the grating period (Talebi in New J Phys 18:123006, 2016 [2]); and (iv) shaped electron beams interacting with matter have different selection rules and might offer approaches for manipulating the electron-induced radiations (Sergeeva et al. in Opt Express 25:26310–26328, 2017 [3]; Tsesses et al. in Phys Rev A 95:013832, 2017 [4]; Kaminer et al. in Phys Rev X 6:011006, 2016 [5]). The last point is fundamentally important, as even for a single electron wave packet, when the electron beam is in a superposition of at least two momentum states, interferences between different quantum paths in the interaction of photons with the electron may occur (Peatross et al. in Phys Rev Lett 100:153601, 2008 [6]). As noted by Keitel and co-workers, the quantum eigenstates of electrons in a nonplanar laser beam or in general shaped light waves are unknown (Peatross et al. in Phys Rev Lett 100:153601, 2008 [6]). For this reason, the development of self-consistent numerical methods may facilitate a better understanding of the outcomes of experiments (Talebi in New J Phys 18:123006, 2016 [2]; White et al. in Phys Rev B 86:205324, 2012 [7]; Kohn et al. in Phys Rev 140:1133, 1965 [8]) and stimulate the design of new experiments.

References

  1. 1.
    M. Kozak, T. Eckstein, N. Schonenberger, P. Hommelhoff, Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. Lett. advance online publication, 10/09/2017 [online],  https://doi.org/10.1038/nphys4282, http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys4282.html#supplementary-informationADSCrossRefGoogle Scholar
  2. 2.
    N. Talebi, Schrödinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith-Purcell effect. New J. Phys. 18(12), 123006 (2016).  https://doi.org/10.1088/1367-2630/18/12/123006ADSCrossRefGoogle Scholar
  3. 3.
    D.Y. Sergeeva, A.P. Potylitsyn, A.A. Tishchenko, M.N. Strikhanov, Smith-Purcell radiation from periodic beams. Opt. Express 25(21), 26310–26328 (2017).  https://doi.org/10.1364/Oe.25.026310. (in English)ADSCrossRefGoogle Scholar
  4. 4.
    S. Tsesses, G. Bartal, I. Kaminer, Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95(1), 013832 (2017).  https://doi.org/10.1103/physreva.95.013832. (in English)ADSCrossRefGoogle Scholar
  5. 5.
    I. Kaminer et al., Quantum Cerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6(1), 011006 (2016).  https://doi.org/10.1103/physrevx.6.011006. (in English)CrossRefGoogle Scholar
  6. 6.
    J. Peatross, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Photoemission of a single-electron wave packet in a strong laser field. Phys. Rev. Lett. 100(15), 153601 (2008).  https://doi.org/10.1103/physrevlett.100.153601. (in English)ADSCrossRefGoogle Scholar
  7. 7.
    A.J. White, M. Sukharev, M. Galperin, Molecular nanoplasmonics: self-consistent electrodynamics in current-carrying junctions. Phys. Rev. B 86(20), 205324 (2012).  https://doi.org/10.1103/PhysRevB.86.205324ADSCrossRefGoogle Scholar
  8. 8.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), 1133 (1965).  https://doi.org/10.1103/PhysRev.140.A1133. (in English)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Talebi, Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry AU—Talebi. Nahid. Adv. Phys. X 3(1), 1499438 (2018).  https://doi.org/10.1080/23746149.2018.1499438MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. Talebi, C. Lienau, Interference between quantum paths in coherent Kapitza-Dirac effect. New J. Phys. (2019) [Online]. Available http://iopscience.iop.org/10.1088/1367-2630/ab3ce3
  11. 11.
    O. Smirnova, M. Spanner, M. Ivanov, Analytical solutions for strong field-driven atomic and molecular one- and two-electron continua and applications to strong-field problems. Phys. Rev. A 77(3), 033407 (2008).  https://doi.org/10.1103/physreva.77.033407. (in English)ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Wolkow, On a mass of solutions of the Dirac equation. Z. Angew. Phys. 94(3–4), 250–260 (1935).  https://doi.org/10.1007/bf01331022. (in German)CrossRefGoogle Scholar
  13. 13.
    E. Kasper, Generalization of Schrodingers wave mechanics for relativistic regions of validity. Z. Naturforsch. A, A28(2), 216–221 (1973) [Online]. Available: <Go to ISI>://WOS:A1973S611900009 (in German)Google Scholar
  14. 14.
    S.T. Park, Propagation of a relativistic electron wave packet in the Dirac equation. Phys. Rev. A 86(6), 062105 (2012).  https://doi.org/10.1103/physreva.86.062105. (in English)ADSCrossRefGoogle Scholar
  15. 15.
    S.T. Park, M.M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).  https://doi.org/10.1088/1367-2630/12/12/123028. (in English)ADSCrossRefGoogle Scholar
  16. 16.
    F.J.G. de Abajo, A. Asenjo-Garcia, M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10(5), 1859–1863 (2010).  https://doi.org/10.1021/nl100613s. (in English)ADSCrossRefGoogle Scholar
  17. 17.
    D. Wolf et al., 3D magnetic induction maps of nanoscale materials revealed by electron holographic tomography. Chem. Mater. 27(19), 6771–6778 (2015).  https://doi.org/10.1021/acs.chemmater.5b02723. (in English)CrossRefGoogle Scholar
  18. 18.
    R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989).  https://doi.org/10.1103/RevModPhys.61.689. (in English)ADSCrossRefGoogle Scholar
  19. 19.
    EJ. Baerends, Perspective on self-consistent equations including exchange and correlation effects; W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133–1138 (in English), Theor. Chem. Acc. 103(3–4), 265–269 (2000). Doi:  https://doi.org/10.1007/s002140050031 (in English)
  20. 20.
    B. Walker, R. Gebauer, Ultrasoft pseudopotentials in time-dependent density-functional theory. J. Chem. Phys. 127(16), 164106 (2007).  https://doi.org/10.1063/1.2786999. (in English)ADSCrossRefGoogle Scholar
  21. 21.
    J. Harris, R.O. Jones, Pseudopotentials in density-functional theory. Phys. Rev. Lett. 41(3), 191–194 (1978).  https://doi.org/10.1103/PhysRevLett.41.191. (in English)ADSCrossRefGoogle Scholar
  22. 22.
    E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984).  https://doi.org/10.1103/PhysRevLett.52.997. (in English)ADSCrossRefGoogle Scholar
  23. 23.
    X.S. Li, S.M. Smith, A.N. Markevitch, D.A. Romanov, R.J. Levis, H.B. Schlegel, A time-dependent Hartree-Fock approach for studying the electronic optical response of molecules in intense fields. Phys. Chem. Chem. Phys. 7(2), 233–239 (2005).  https://doi.org/10.1039/b415849k. (in English)CrossRefGoogle Scholar
  24. 24.
    P.W. Hawkes, E. Kasper, Principles of Electron Optics (Academic Press, London, 1996)Google Scholar
  25. 25.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Thomson Learning Inc., United States of America, 1976)zbMATHGoogle Scholar
  26. 26.
    H. Tal-Ezer, R. Kosloff, An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81(9), 3967–3971 (1984).  https://doi.org/10.1063/1.448136ADSCrossRefGoogle Scholar
  27. 27.
    X.J. Shen, A. Lozano, W. Dong, H.F. Busnengo, X.H. Yan, towards bond selective chemistry from first principles: methane on metal surfaces. Phys. Rev. Lett. 112(4), 046101 (2014).  https://doi.org/10.1103/PhysRevLett.112.046101ADSCrossRefGoogle Scholar
  28. 28.
    L. Gaudreau et al., Coherent control of three-spin states in a triple quantum dot. Nat. Phys. 8, 54. 11/27/2011 [online],  https://doi.org/10.1038/nphys2149, https://www.nature.com/articles/nphys2149#supplementary-informationADSCrossRefGoogle Scholar
  29. 29.
    J. Hansom et al., Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725, 09/07/2014 [online],  https://doi.org/10.1038/nphys3077, https://www.nature.com/articles/nphys3077#supplementary-informationADSCrossRefGoogle Scholar
  30. 30.
    I.S. Mark, Ultrafast nanoplasmonics under coherent control. New J. Phys. 10(2), 025031 [online], http://stacks.iop.org/1367-2630/10/i=2/a=025031
  31. 31.
    R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367–387 (1948).  https://doi.org/10.1103/RevModPhys.20.367ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Li et al., Classical-Quantum correspondence for above-threshold ionization. Phy. Rev. Lett. 112(11), 113002 (2014).  https://doi.org/10.1103/PhysRevLett.112.113002ADSCrossRefGoogle Scholar
  33. 33.
    D.B. Milošević, W. Becker, Improved strong-field approximation and quantum-orbit theory: application to ionization by a bicircular laser field. Phys. Rev. A 93(6), 063418 (2016).  https://doi.org/10.1103/PhysRevA.93.063418ADSCrossRefGoogle Scholar
  34. 34.
    A. Zaïr et al., Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100(14), 143902 (2008).  https://doi.org/10.1103/PhysRevLett.100.143902ADSCrossRefGoogle Scholar
  35. 35.
    P. Salieres et al., Feynman’s path-integral approach for intense-laser-atom interactions. Science 292(5518), 902–905 (2001).  https://doi.org/10.1126/science.108836. (in English)ADSCrossRefGoogle Scholar
  36. 36.
    T.C. Weinacht, J. Ahn, P.H. Bucksbaum, Controlling the shape of a quantum wavefunction. Nature 397, 233 (1999).  https://doi.org/10.1038/16654ADSCrossRefGoogle Scholar
  37. 37.
    A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schafer, C. Ropers, Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521(7551), 200 (2015).  https://doi.org/10.1038/nature14463. (in English)ADSCrossRefGoogle Scholar
  38. 38.
    K.E. Echternkamp, A. Feist, S. Schafer, C. Ropers, Ramsey-type phase control of free-electron beams. Nat. Phys. 12(11), 1000 (2016).  https://doi.org/10.1038/nphys3844. (in English)CrossRefGoogle Scholar
  39. 39.
    H. Batelaan, Colloquium: Illuminating the Kapitza-Dirac effect with electron matter optics. Rev. Mod. Phys. 79(3), 929–941 (2007).  https://doi.org/10.1103/revmodphys.79.929. (in English)ADSCrossRefGoogle Scholar
  40. 40.
    P.L. Kapitza, P.A.M. Dirac, The reflection of electrons from standing light waves. Math. Proc. Cambridge Philos. Soc. 29(2), 297–300 (2008).  https://doi.org/10.1017/S0305004100011105ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    A. Howie, Photon interactions for electron microscopy applications. Eur. Phys. J. Appl. Phys. 54(3), 33502 (2011).  https://doi.org/10.1051/epjap/2010100353ADSCrossRefGoogle Scholar
  42. 42.
    H. Batelaan, The Kapitza-Dirac effect. Contemp. Phys. 41(6), 369–381 (2000).  https://doi.org/10.1080/00107510010001220. (in English)ADSCrossRefGoogle Scholar
  43. 43.
    F.J. García de Abajo, Optical excitations in electron microscopy. Rev. Mod. Phys. 82(1), 209–275 (2010).  https://doi.org/10.1103/revmodphys.82.209ADSCrossRefGoogle Scholar
  44. 44.
    R.F. Harrington, Time-harmonic electromagnetic fields (McGraw-Hill Book Company, New York, 1961)Google Scholar
  45. 45.
    A. Howie, Stimulated excitation electron microscopy and spectroscopy. Ultramicroscopy 151, 116–121 (2015).  https://doi.org/10.1016/j.ultramic.2014.09.006. (in English)CrossRefGoogle Scholar
  46. 46.
    M. Kozak, T. Eckstein, N. Schonenberger, P. Hommelho, Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14(2), 121 (2018).  https://doi.org/10.1038/nphys4282. (in English)CrossRefGoogle Scholar
  47. 47.
    M. Kozak, N. Schonenberger, P. Hommelhoff, Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120(10), 103203 (2018).  https://doi.org/10.1103/physrevlett.120.103203. (in English)ADSCrossRefGoogle Scholar
  48. 48.
    J. Vogelsang et al., Plasmonic-nanofocusing-based electron holography. Acs Photonics 5(9), 3584–3593 (2018).  https://doi.org/10.1021/acsphotonics.8b00418CrossRefGoogle Scholar
  49. 49.
    J. Kempe, Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003).  https://doi.org/10.1080/00107151031000110776. (in English)ADSCrossRefGoogle Scholar
  50. 50.
    S. Aaronson, A. Arkhipov, The computational complexity of linear optics. Acm S. Theory Comput. 333–342 (2011) [Online]. Available <GotoISI>://WOS:000297656800035. (in English)Google Scholar
  51. 51.
    N. Spagnolo et al., Experimental validation of photonic boson sampling. Nat. Photonics 8(8), 615–620 (2014).  https://doi.org/10.1038/Nphoton.2014.135. (in English)ADSCrossRefGoogle Scholar
  52. 52.
    L. Sansoni et al., Two-particle Bosonic-Fermionic Quantumwalk via integrated photonics. Phys. Rev. Lett. 108(1), 010502 (2012).  https://doi.org/10.1103/physrevlett.108.010502. (in English)ADSCrossRefGoogle Scholar
  53. 53.
    R. Garciamolina, A. Grasmarti, A. Howie, R.H. Ritchie, Retardation effects in the interaction of charged-particle beams with bounded condensed media. J. Phys. C. Solid State. 18(27), 5335–5345 (1985).  https://doi.org/10.1088/0022-3719/18/27/019. (in English)ADSCrossRefGoogle Scholar
  54. 54.
    F.J.G. de Abajo, A. Rivacoba, N. Zabala, N. Yamamoto, Boundary effects in cherenkov radiation. Phys. Rev. B 69(15), 155420 (2004).  https://doi.org/10.1103/physrevb.69.155420. (in English)ADSCrossRefGoogle Scholar
  55. 55.
    C. Luo, M. Ibanescu, S.G. Johnson, J.D. Joannopoulos, Cerenkov radiation in photonic crystals. Science 299(5605), 368–371 (2003).  https://doi.org/10.1126/science.1079549. (in English)ADSCrossRefGoogle Scholar
  56. 56.
    N. Yamamoto, F.J.G. de Abajo, V. Myroshnychenko, Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Phys. Rev. B 91(12), 125144 (2015).  https://doi.org/10.1103/physrevb.91.125144. (in English)ADSCrossRefGoogle Scholar
  57. 57.
    K. Mizuno, J. Pae, T. Nozokido, K. Furuya, Experimental evidence of the inverse Smith-Purcell effect. Nature 328(6125), 45–47 (1987).  https://doi.org/10.1038/328045a0ADSCrossRefGoogle Scholar
  58. 58.
    A. Asenjo-Garcia, F.J.G. de Abajo, Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013).  https://doi.org/10.1088/1367-2630/15/10/103021. (in English)ADSCrossRefGoogle Scholar
  59. 59.
    J.P. Verboncoeur, Particle simulation of plasmas: review and advances. Plasma Phys. Contr. F. 47, A231–A260 (2005).  https://doi.org/10.1088/0741-3335/47/5A/017. (in English)ADSCrossRefGoogle Scholar
  60. 60.
    A. Fallahi, F. Kartner, Field-based DGTD/PIC technique for general and stable simulation of interaction between light and electron bunches. J. Phys. B Mol. Opt. 47(23), 234015 (2014).  https://doi.org/10.1088/0953-4075/47/23/234015. (in English)ADSCrossRefGoogle Scholar
  61. 61.
    J.-L. Vay, Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15(5), 056701 (2008).  https://doi.org/10.1063/1.2837054ADSCrossRefGoogle Scholar
  62. 62.
    B. Naranjo, A. Valloni, S. Putterman, J.B. Rosenzweig, Stable charged-particle acceleration and focusing in a laser accelerator using spatial Harmonics. Phys. Rev. Lett. 109(16), 164803 (2012).  https://doi.org/10.1103/physrevlett.109.164803ADSCrossRefGoogle Scholar
  63. 63.
    J. Breuer, J. McNeur, P. Hommelhoff, Dielectric laser acceleration of electrons in the vicinity of single and double grating structures—theory and simulations. J. Phys. B: At. Mol. Opt. Phys. 47(23), 234004 (2014).  https://doi.org/10.1088/0953-4075/47/23/234004ADSCrossRefGoogle Scholar
  64. 64.
    M. Ferrario et al., IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers. Nucl. Instrum. Methods Phys. Res. Sect. A 740, 138–146 (2014).  https://doi.org/10.1016/j.nima.2013.11.040ADSCrossRefGoogle Scholar
  65. 65.
    E.A. Peralta et al., Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91, 11/06/2013 [online],  https://doi.org/10.1038/nature12664, https://www.nature.com/articles/nature12664#supplementary-informationADSCrossRefGoogle Scholar
  66. 66.
    J. Breuer, P. Hommelhoff, Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111(13), 134803 (2013).  https://doi.org/10.1103/physrevlett.111.134803ADSCrossRefGoogle Scholar
  67. 67.
    P. Baum, On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem. Phys. 423, 55–61 (2013).  https://doi.org/10.1016/j.chemphys.2013.06.012CrossRefGoogle Scholar
  68. 68.
    L. Kasmi, D. Kreier, M. Bradler, E. Riedle, P. Baum, Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New J. Phys. 17(3), 033008 (2015).  https://doi.org/10.1088/1367-2630/17/3/033008ADSCrossRefGoogle Scholar
  69. 69.
    J. Hoffrogge et al., Tip-based source of femtosecond electron pulses at 30 keV. J. Appl. Phys. 115(9), 094506 (2014).  https://doi.org/10.1063/1.4867185ADSCrossRefGoogle Scholar
  70. 70.
    B. Piglosiewicz et al., Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nat. Photonics 8, 37, 11/10/2013 [online],  https://doi.org/10.1038/nphoton.2013.288, https://www.nature.com/articles/nphoton.2013.288#supplementary-informationADSCrossRefGoogle Scholar
  71. 71.
    M. Aidelsburger, F.O. Kirchner, F. Krausz, P. Baum, Single-electron pulses for ultrafast diffraction. Proc. Natl. Acad. Sci. 107(46), 19714–19719 (2010).  https://doi.org/10.1073/pnas.1010165107ADSCrossRefGoogle Scholar
  72. 72.
    M. Krüger, M. Schenk, M. Förster, P. Hommelhoff, Attosecond physics in photoemission from a metal nanotip. J. Phys. B At. Mol. Opt. Phys. 45(7), 074006 (2012).  https://doi.org/10.1088/0953-4075/45/7/074006ADSCrossRefGoogle Scholar
  73. 73.
    G. Herink, D.R. Solli, M. Gulde, C. Ropers, Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190, 03/07/2012 [online],  https://doi.org/10.1038/nature10878, https://www.nature.com/articles/nature10878#supplementary-informationADSCrossRefGoogle Scholar
  74. 74.
    B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, H. Batelaan, Laser-induced ultrafast electron emission from a field emission tip. New J. Phys. 9(5), 142 (2007).  https://doi.org/10.1088/1367-2630/9/5/142ADSCrossRefGoogle Scholar
  75. 75.
    B. Schröder, M. Sivis, R. Bormann, S. Schäfer, C. Ropers, An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons. Appl. Phys. Lett. 107(23), 231105 (2015).  https://doi.org/10.1063/1.4937121ADSCrossRefGoogle Scholar
  76. 76.
    M. Müller, V. Kravtsov, A. Paarmann, M.B. Raschke, R. Ernstorfer, Nanofocused plasmon-driven sub-10 fs electron point Source. Acs Photonics 3(4), 611–619 (2016).  https://doi.org/10.1021/acsphotonics.5b00710CrossRefGoogle Scholar
  77. 77.
    K.E. Echternkamp, G. Herink, S.V. Yalunin, K. Rademann, S. Schäfer, C. Ropers, Strong-field photoemission in nanotip near-fields: from quiver to sub-cycle electron dynamics. Appl. Phys. B J 122(4), 80 (2016).  https://doi.org/10.1007/s00340-016-6351-xADSCrossRefGoogle Scholar
  78. 78.
    C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, P. Baum, All-optical control and metrology of electron pulses. Science 352(6284), 429–433 (2016).  https://doi.org/10.1126/science.aae0003ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    A. Gliserin, M. Walbran, P. Baum, A high-resolution time-of-flight energy analyzer for femtosecond electron pulses at 30 keV. Rev. Sci. Instrum. 87(3), 033302 (2016).  https://doi.org/10.1063/1.4942912ADSCrossRefGoogle Scholar
  80. 80.
    J. Vogelsang et al., Ultrafast electron emission from a sharp metal nanotaper driven by Adiabatic nanofocusing of surface plasmons. Nano Lett. 15(7), 4685–4691 (2015).  https://doi.org/10.1021/acs.nanolett.5b01513ADSCrossRefGoogle Scholar
  81. 81.
    A. Gliserin, A. Apolonski, F. Krausz, P. Baum, Compression of single-electron pulses with a microwave cavity. New J. Phys. 14, 073055 (2012).  https://doi.org/10.1088/1367-2630/14/7/073055. (in English)ADSCrossRefGoogle Scholar
  82. 82.
    P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125, 127(18), 164705, 189901 (2006, 2007). Doi: https://doi.org/10.1063/1.2802403 (in English)
  83. 83.
    P.G. Etchegoin, E.C. Le Ru, M. Meyer, An analytic model for the optical properties of gold. J. Chem. Phys. 125(16), 164705 (2006). Doi: https://doi.org/10.1063/1.2360270ADSCrossRefGoogle Scholar
  84. 84.
    R.M. Joseph, A. Taflove, FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45(3), 364–374 (1997).  https://doi.org/10.1109/8.558652ADSCrossRefGoogle Scholar
  85. 85.
    D. Ehberger et al., Highly coherent electron beam from a laser-triggered tungsten needle tip. Phys. Rev. Lett. 114(22), 227601 (2015).  https://doi.org/10.1103/physrevlett.114.227601. (in English)ADSCrossRefGoogle Scholar
  86. 86.
    D. Gabor, A new microscopic principle. Nature 161(4098), 777–778 (1948).  https://doi.org/10.1038/161777a0ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stuttgart Center for Electron Microscopy (StEM)Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Institute of Experimental and Applied PhysicsChristian-Albrechts University in KielKielGermany

Personalised recommendations