Estimating Missing Environmental Information by Contextual Data Cooperation

  • Davide Andrea GuastellaEmail author
  • Valérie Camps
  • Marie-Pierre Gleizes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11873)


The quality of life of users and energy consumption could be optimized by a complex network of sensors. Nevertheless, smart environments depend on their size, so it is expensive to provide enough sensors at low cost to monitor each part of the environment. We propose a cooperative multi-agent solution to estimate missing environmental information in smart environment when no ad-hoc sensors are available. We evaluated our proposal on a real dataset and compared the results to standard state-of-the-art solutions.


Smart city Cooperative multi-agent systems Missing information estimation 


  1. 1.
    Berthold, M.R., et al.: KNIME - the konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explor. Newslett. 11(1), 26–31 (2009).
  2. 2.
    Berthold, M.R., Huber, K.P.: Missing values and learning of fuzzy rules 06(2), 171–178.
  3. 3.
    Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. IEEE Trans. Knowl. Data Eng. 22(11), 1492–1506 (2010). Scholar
  4. 4.
    Bressan, L., Valentini, A., Paccagnella, T., Montani, A., Marsigli, C., Tesini, M.: Sensitivity of sea-level forecasting to the horizontal resolution and sea surface forcing for different configurations of an oceanographic model of the Adriatic Sea. Adv. Sci. Res. (Copernicus) 14, 77–84 (2017). Scholar
  5. 5.
    Georgé, J.P., Gleizes, M.P., Camps, V.: Cooperation. In: Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A. (eds.) Self-Organising Software: From Natural to Artificial Adaptation, pp. 193–226. Springer, Heidelberg (2011).
  6. 6.
    Guastella, D., Camps, V., Gleizes, M.P.: Multi-agent systems for estimating missing information in smart cities. In: Proceedings of the 11th International Conference on Agents and Artificial Intelligence (ICAART), pp. 214–223. SciTePress (2019).
  7. 7.
    Guastella, D.A., Valenti, C.: Estimating missing information by cluster analysis and normalized convolution. In: 2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), pp. 1–6. IEEE, September 2018.
  8. 8.
    Moreno-Torres, J., Sáez, J.A., Herrera, F.: Study on the impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans. Neural Netw. Learn. Syst. 23, 1304–1312 (2012).
  9. 9.
    Sabatucci, L., Seidita, V., Cossentino, M.: The four types of self-adaptive systems: a metamodel. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 440–450. Springer, Cham (2018). Scholar
  10. 10.
    Tomazzoli, C., Cristani, M., Karafili, E., Olivieri, F.: Non-monotonic reasoning rules for energy efficiency. J. Ambient Intell. Smart Environ. 9(3), 345–360. (IOS Press)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Davide Andrea Guastella
    • 1
    • 2
    Email author
  • Valérie Camps
    • 1
  • Marie-Pierre Gleizes
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse, Université de Toulouse III - Paul SabatierToulouseFrance
  2. 2.Università degli Studi di PalermoPalermoItaly

Personalised recommendations