Subset Spaces for Conditional Norms

  • Huimin Dong
  • R. Ramanujam
  • Yì N. WángEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11873)


We introduce two notions of conditionals, forward conditional for deductive implication and backward conditional for abductive implication. The former is in regard to Lewis [16]’s conditional, while the latter is treated as a binary window modality. We introduce logics of forward and backward conditionals, interpreted over a point-set semantics (with explicit likelihood) from the logic of subset spaces. These conditionals and their logics have applications in the studies of conditional norms.


Forward conditional Backward conditional Modal logic Subset space Logic of norms 



Huimin Dong is supported by the China Postdoctoral Science Foundation (Grant No. 2018M632494), the National Social Science Fund of China (Grant No. 18ZDA290), the National Science Centre of Poland (Grant No. UMO-2017/26/M/HS1/01092), and the Fundamental Research Funds for the Central Universities of China. Yì N. Wáng acknowledges funding support by the National Social Science Foundation of China (Grant No. 16CZX048, 18ZDA290).


  1. 1.
    Anglberger, A.J., Gratzl, N., Roy, O.: Obligation, free choice, and the logic of weakest permissions. Rev. Symb. Logic 8, 807–827 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arlo-Costa, H., Egré, P., Rott, H.: The logic of conditionals. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2019 Edition (2019)Google Scholar
  3. 3.
    van Benthem, J.F.A.K.: Minimal deontic logics. Bull. Sect. Logic 8(1), 36–41 (1979)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  5. 5.
    Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Ann. Pure Appl. Logic 78(1–3), 73–110 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dong, H., Roy, O.: Three deontic logics for rational agency in games. Stud. Logic 8(4), 7–31 (2015)Google Scholar
  7. 7.
    Douven, I.: Abduction. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2017 Edition (2017)Google Scholar
  8. 8.
    Fraassen, B.C.: The logic of conditional obligation. J. Philos. Logic 1(3), 417–438 (1972)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L.: Handbook of Deontic Logic and Normative Systems. College Publication, London (2013)zbMATHGoogle Scholar
  10. 10.
    Gargov, G., Passy, S., Tinchev, T.: Modal environment for boolean speculations. In: Skordev, D.G. (ed.) Mathematical Logic and Its Applications, pp. 253–263. Springer, Boston (1987). Scholar
  11. 11.
    Gelati, J., Rotolo, A., Sartor, G., Governatori, G.: Normative autonomy and normative co-ordination: declarative power, representation, and mandate. Artif. Intell. Law 12(1–2), 53–81 (2004)CrossRefGoogle Scholar
  12. 12.
    Goldblatt, R.I.: Semantic analysis of orthologic. J. Philos. Logic 3(1), 19–35 (1974). Scholar
  13. 13.
    Governatori, G., Gelati, J., Rotolo, A., Sartor, G.: Actions, institutions, powers: preliminary notes. In: International Workshop on Regulated Agent-Based Social Systems: Theories and Applications, RASTA 2002, pp. 131–147. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Hansson, S.O.: The varieties of permissions. In: Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative Systems, vol. 1. College Publication, London (2013)Google Scholar
  15. 15.
    Humberstone, I.L.: Inaccessible worlds. Notre Dame J. Formal Logic 24(3), 346–352 (1983). Scholar
  16. 16.
    Lewis, D.: Counterfactuals. Blackwell Publishers, Oxford (1973)zbMATHGoogle Scholar
  17. 17.
    Makinson, D.: On a fundamental problem of deontic logic. In: Norms, Logics and Information Systems. New Studies on Deontic Logic and Computer Science, pp. 29–54 (1999)Google Scholar
  18. 18.
    Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) Proceedings of the 4th Conference on Theoretical Aspects of Reasoning about Knowledge (TARK), Monterey, CA, pp. 95–105. Morgan Kaufmann, San Francisco, March 1992. Preliminary reportGoogle Scholar
  19. 19.
    Pigozzi, G., Van Der Torre, L.: Multiagent deontic logic and its challenges from a normative systems perspective. Ifcolog J. Logics Appl. 4, 2929–2993 (2017)Google Scholar
  20. 20.
    Ramsey, F.P.: General propositions and causality. In: Mellor, D.H. (ed.) F. P. Ramsey: Philosophical Papers. Cambridge University Press, Cambridge (1990)Google Scholar
  21. 21.
    Schelling, T.C.: The Strategy of Conflict. Harvard University Press, Cambridge (1980)zbMATHGoogle Scholar
  22. 22.
    Tamminga, A.: Deontic logic for strategic games. Erkenntnis 78(1), 183–200 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tuzet, G.: Legal abductions. In: Legal Knowledge and Information Systems, pp. 41–49. IOS Press, Amsterdam (2003)Google Scholar
  24. 24.
    Vickers, S.: Topology via Logic. Cambridge University Press, New York (1989)zbMATHGoogle Scholar
  25. 25.
    Wáng, Y.N., Ågotnes, T.: Multi-agent subset space logic. In: Proceedings of IJCAI, pp. 1155–1161 (2013)Google Scholar
  26. 26.
    Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hoboken (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhilosophyZhejiang UniversityHangzhouChina
  2. 2.Institute of Mathematical SciencesChennaiIndia

Personalised recommendations