Supply Chain Management World

A Benchmark Environment for Situated Negotiations
  • Yasser MohammadEmail author
  • Enrique Areyan Viqueira
  • Nahum Alvarez Ayerza
  • Amy Greenwald
  • Shinji Nakadai
  • Satoshi Morinaga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11873)


In the very near future, we anticipate that more and more artificially intelligent agents will be deployed to represent individuals and institutions. Automated negotiation environments are a mechanism by which to coordinate the behavior of such agents. Most existing work on automated negotiation assumes a context that is predefined, and hence, static. This paper focuses on the dynamic case, which we call situated negotiation, where agents need to decide not only how to negotiate, but with whom, and about what. We describe a common benchmark simulation environment for evaluating situated negotiation strategies, and evaluate several baseline strategies in the proposed environment.


  1. 1.
    Adabi, S., Movaghar, A., Rahmani, A.M., Beigy, H., Dastmalchy-Tabrizi, H.: A new fuzzy negotiation protocol for grid resource allocation. J. Network Comput. Appl. 37, 89–126 (2014)CrossRefGoogle Scholar
  2. 2.
    An, B., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment for dynamic resource allocation in cloud computing. In: Proceedings of the 9th AAMAS, pp. 981–988 (2010)Google Scholar
  3. 3.
    Aydoğan, R., Festen, D., Hindriks, K.V., Jonker, C.M.: Alternating offers protocols for multilateral negotiation. In: Fujita, K., et al. (eds.) Modern Approaches to Agent-based Complex Automated Negotiation. SCI, vol. 674, pp. 153–167. Springer, Cham (2017). Scholar
  4. 4.
    Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for autonomous agents. Robot. Auton. Syst. 24(3–4), 159–182 (1998)CrossRefGoogle Scholar
  5. 5.
    Greenwald, A., Boyan, J.: Bidding algorithms for simultaneous auctions. In: Proceedings of the 3rd ACM Conference on Electronic Commerce, pp. 115–124 (2001)Google Scholar
  6. 6.
    Jaffray, J.Y.: Existence of a continuous utility function: an elementary proof. Econometrica 43(5/6), 981–983 (1975)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jonker, C.M., Aydogan, R., Baarslag, T., Fujita, K., Ito, T., Hindriks, K.V.: Automated negotiating agents competition (ANAC). In: AAAI, pp. 5070–5072 (2017)Google Scholar
  8. 8.
    Krainin, M., An, B., Lesser, V.: An application of automated negotiation to distributed task allocation. In: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 138–145 (2007)Google Scholar
  9. 9.
    Li, C., Giampapa, J., Sycara, K.: Bilateral negotiation decisions with uncertain dynamic outside options. IEEE Trans. Syst. Man. Cybern. Part C (Appl. Rev.) 36(1), 31–44 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, M., Vo, Q.B., Kowalczyk, R., Ossowski, S., Kersten, G.: Automated negotiation in open and distributed environments. Expert Syst. Appl. 40(15), 6195–6212 (2013)CrossRefGoogle Scholar
  11. 11.
    Mansour, K., Kowalczyk, R.: A meta-strategy for coordinating of one-to-many negotiation over multiple issues. In: Wang, Y., Li, T. (eds.) Foundations of Intelligent Systems, pp. 343–353. Springer, Heidelberg (2011). Scholar
  12. 12.
    Mohammad, Y., Fujita, K., Greenwald, A., Klein, M., Morinaga, S., Nakadai, S.: ANAC 2019 SCML (2019).
  13. 13.
    Mohammad, Y., Greenwald, A., Nakadai, S.: Negmas: a platform for situated negotiations. In: Twelfth International Workshop on Agent-Based Complex Automated Negotiations (ACAN2019) in Conjunction with IJCAI (2019)Google Scholar
  14. 14.
    Mohammad, Y., Nakadai, S.: Optimal value of information based elicitation during negotiation. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 242–250. International Foundation for Autonomous Agents and Multiagent Systems (2019)Google Scholar
  15. 15.
    Petruzzi, N.C., Dada, M.: Pricing and the newsvendor problem: a review with extensions. Oper. Res. 47(2), 183–194 (1999)CrossRefGoogle Scholar
  16. 16.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Worek, W.: Preliminary face recognition grand challenge results. In: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), pp. 15–24. IEEE (2006)Google Scholar
  17. 17.
    PRNewswire: digital process automation market by component, business function, deployment type, organization size, industry vertical and region - global forecast to 2023 (2019).
  18. 18.
    Wellman, M.P., Greenwald, A., Stone, P., Wurman, P.R.: The 2001 trading agent competition. Electron. Markets 13(1), 4–12 (2003)CrossRefGoogle Scholar
  19. 19.
    Wellman, M.P., Sodomka, E., Greenwald, A.: Self-confirming price-prediction strategies for simultaneous one-shot auctions. Games Econ. Behav. 102, 339–372 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Williams, C., Robu, V., Gerding, E., Jennings, N.R.: Negotiating concurrently with unknown opponents in complex, real-time domains. Front. Artif. Intell. Appl. 242, 834–839 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yasser Mohammad
    • 1
    • 4
    Email author
  • Enrique Areyan Viqueira
    • 3
  • Nahum Alvarez Ayerza
    • 1
  • Amy Greenwald
    • 3
  • Shinji Nakadai
    • 1
    • 2
  • Satoshi Morinaga
    • 1
    • 2
  1. 1.AISTTokyoJapan
  2. 2.NEC Inc.TokyoJapan
  3. 3.Brown UniversityProvidenceUSA
  4. 4.Assiut UniversityAsyutEgypt

Personalised recommendations