Advertisement

Designing Novel Photocatalysts for Disinfection of Multidrug-Resistant Waterborne Bacteria

  • Sourav Das
  • Ananyo Jyoti Misra
  • A. P. Habeeb Rahman
  • Aradhana Basu
  • Amrita Mishra
  • Ashok J. Tamhankar
  • Cecilia Stålsby Lundborg
  • Suraj K. TripathyEmail author
Chapter
  • 36 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Water is the main source of sustaining life. It is an indispensable need for flora and fauna alike. However, water is often contaminated by multidrug-resistant bacteria and various other contaminants. Disinfection methods like ozonation and chlorination fail to curtail these menace, often generating harmful by-products in this process. Photocatalysis, a subsidiary of advanced oxidation processes might have an important role to play in water decontamination. They are effective, do not generate by-products, and provide complete inactivation against these MDR strains and pollutants. The already existing photocatalysts like Titanium Dioxide and Zinc Oxide are being depleted to their core. So, newer and novel photocatalysts need to be developed with a more proficient, eco-friendly and biocompatible approach. This discussion aims to have a closer look at the existing disinfection techniques and the emerging players in the field of photocatalysis.

Keywords

Multidrug-resistant bacteria Photocatalysis Core-shell nanocomposites Graphene oxide Graphitic carbon nitride 

Abbreviations

PCD

Photocatalytic Disinfection

NC

Nanocomposites

MDR

Multidrug-resistant

ARG

Antibiotic-resistance genes

GO

Graphene Oxide

SODIS

Solar Disinfection

LED

Light Emitting Diode

DNA

Deoxyribonucleic Acid

ROS

Reactive Oxygen Species

VB

Valence Bond

CB

Conduction Band

RNA

Ribonucleic Acid

UV

Ultra Violet

References

  1. Adhikari S, Banerjee A, Eswar NK, Sarkar D, Madras G (2015) Photocatalytic inactivation of E. coli by ZnO–Ag nanoparticles under solar radiation. RSC Adv 5(63):51067–51077CrossRefGoogle Scholar
  2. Agus E, Voutchkov N, Sedlak DL (2009) Disinfection by-products and their potential impact on the quality of water produced by desalination systems: a literature review. Desalination 237(1–3):214–237CrossRefGoogle Scholar
  3. Akhavan O, Azimirad R (2009) Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A 369(1–2):77–82CrossRefGoogle Scholar
  4. Akhavan O, Ghaderi E (2012) Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 50(5):1853–1860CrossRefGoogle Scholar
  5. Alfaro-Moreno E, Nawrot TS, Nemmar A, Nemery B (2007) Particulate matter in the environment: pulmonary and cardiovascular effects. Curr Opin Pulm Med 13(2):98–106Google Scholar
  6. Aramendía M, Borau V, Colmenares J, Marinas A, Marinas J, Navío J, Urbano F (2008) Modification of the photocatalytic activity of Pd/TiO2 and Zn/TiO2 systems through different oxidative and reductive calcination treatments. Appl Catal B 80(1–2):88–97CrossRefGoogle Scholar
  7. Artale MA, Augugliaro V, Drioli E, Golemme G, Grande C, Loddo V, Molinari R, Palmisano L, Schiavello M (2001) Preparation and characterisation of membranes with entrapped TiO2 and preliminary photocatalytic tests. Annali di chimica 91(3–4):127–136Google Scholar
  8. Ashbolt NJ (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198(1–3):229–238CrossRefGoogle Scholar
  9. Bandara J, Pulgarin C, Peringer P, Kiwi J (1997) Chemical (photo-activated) coupled biological homogeneous degradation of p-nitro-o-toluene-sulfonic acid in a flow reactor. J Photochem Photobiol A Chem 111(1–3):253–263Google Scholar
  10. Barancheshme F, Munir M (2018) Strategies to combat antibiotic resistance in the wastewater treatment plants. Front Microbiol 8:2603CrossRefGoogle Scholar
  11. Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862Google Scholar
  12. Bergaya F, Lagaly G (2006) General introduction: clays, clay minerals, and clay science. Dev Clay Sci 1:1–18Google Scholar
  13. Beydoun D, Amal R, Low GK-C, McEvoy S (2000) Novel photocatalyst: titania-coated magnetite. Activity and photodissolution. J Phys Chem B 104(18):4387–4396CrossRefGoogle Scholar
  14. Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Sci Technol 50(2):702–706CrossRefGoogle Scholar
  15. Bradley BR, Daigger GT, Rubin R, Tchobanoglous G (2002) Evaluation of onsite wastewater treatment technologies using sustainable development criteria. Clean Technol Environ Policy 4(2):87–99CrossRefGoogle Scholar
  16. Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374CrossRefGoogle Scholar
  17. Byrne J, Eggins B, Brown N, McKinney B, Rouse M (1998) Immobilisation of TiO2 powder for the treatment of polluted water. Appl Catal B 17(1–2):25–36CrossRefGoogle Scholar
  18. Carré G, Hamon E, Ennahar S, Estner M, Lett M-C, Horvatovich P, Gies J-P, Keller V, Keller N, Andre P (2014) TiO2 photocatalysis damages lipids and proteins in Escherichia coli. Appl Environ Microbiol 80(8):2573–2581CrossRefGoogle Scholar
  19. Chaurasia AK, Thorat ND, Tandon A, Kim J-H, Park SH, Kim KK (2016) Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep 6:33662CrossRefGoogle Scholar
  20. Cho M, Chung H, Yoon J (2003) Quantitative evaluation of the synergistic sequential inactivation of Bacillus subtilis spores with ozone followed by chlorine. Environ Sci Technol 37(10):2134–2138Google Scholar
  21. Choi YI, Lee S, Kim SK, Kim Y-I, Cho DW, Khan MM, Sohn Y (2016) Fabrication of ZnO, ZnS, Ag–ZnS, and Au–ZnS microspheres for photocatalytic activities, CO oxidation and 2-hydroxyterephthalic acid synthesis. J Alloy Compd 675:46–56CrossRefGoogle Scholar
  22. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027Google Scholar
  23. Chong MN, Jin B, Saint CP (2011) Bacterial inactivation kinetics of a photo-disinfection system using novel titania-impregnated kaolinite photocatalyst. Chem Eng J 171(1):16–23CrossRefGoogle Scholar
  24. Das S, Ghosh S, Misra A, Tamhankar A, Mishra A, Lundborg C, Tripathy S (2018b) Sunlight assisted photocatalytic degradation of ciprofloxacin in water using Fe doped ZnO nanoparticles for potential public health applications. Int J Environ Res Public Health 15:2440CrossRefGoogle Scholar
  25. Das B, Khan MI, Jayabalan R, Behera SK, Yun S-I, Tripathy SK, Mishra A (2016) Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei. Sci Rep 6:36403CrossRefGoogle Scholar
  26. Das S, Ghosh S, Misra A, Tamhankar A, Mishra A, Lundborg C, Tripathy S (2018) Sunlight assisted photocatalytic degradation of ciprofloxacin in water using Fe doped ZnO nanoparticles for potential public health applications. Int J Environ Res Public Health 15(11):2440Google Scholar
  27. Das S, Sinha S, Das B, Jayabalan R, Suar M, Mishra A, Tamhankar AJ, Lundborg CS, Tripathy SK (2017) Disinfection of multidrug resistant Escherichia coli by solar-photocatalysis using Fe-doped ZnO nanoparticles. Sci Rep 7(1):104Google Scholar
  28. Das S, Sinha S, Suar M, Yun S-I, Mishra A, Tripathy SK (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ ZnO core–shell structure nanocomposites. J Photochem Photobiol B 142:68–76CrossRefGoogle Scholar
  29. Delgado-Gardea M, Tamez-Guerra P, Gomez-Flores R, Zavala-Díaz de la Serna F, Eroza-de la Vega G, Nevárez-Moorillón G, Pérez-Recoder M, Sánchez-Ramírez B, González-Horta M, Infante-Ramírez R (2016) Multidrug-resistant bacteria isolated from surface water in Bassaseachic Falls National Park, Mexico. Int J Environ Res Public Health 13(6):597Google Scholar
  30. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605Google Scholar
  31. Diwan V, Tamhankar AJ, Khandal RK, Sen S, Aggarwal M, Marothi Y, Iyer RV, Sundblad-Tonderski K, Stålsby-Lundborg C (2010) Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10(1):414Google Scholar
  32. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418(1–2):87–90Google Scholar
  33. Feilizadeh M, Mul G, Vossoughi M (2015) E. coli inactivation by visible light irradiation using a Fe–Cd/TiO2 photocatalyst: statistical analysis and optimization of operating parameters. Appl Catal B Environ 168:441–447Google Scholar
  34. Fernández Silva FV. Evaluation of virulence and new experimental therapeutic strategies for emerging and uncommon medically important fungal pathogens, Universitat Rovira i VirgiliGoogle Scholar
  35. Fernández-Silva F, Capilla J, Mayayo E, Sutton DA, Hernández P, Guarro J (2013) Evaluation of the efficacies of Amphotericin B, Posaconazole, Voriconazole, and Anidulafungin in a murine disseminated infection by the emerging opportunistic Fungus Sarocladium (Acremonium). Antimicrob Agents Chem 57(12):6265–6269Google Scholar
  36. Francy DS, Stelzer EA, Bushon RN, Brady AM, Williston AG, Riddell KR, Borchardt MA, Spencer SK, Gellner TM (2012) Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Water Res 46(13):4164–4178Google Scholar
  37. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37Google Scholar
  38. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63(12):515–582CrossRefGoogle Scholar
  39. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9(1):1–12CrossRefGoogle Scholar
  40. Greer A, Ng V, Fisman D (2008) Climate change and infectious diseases in North America: the road ahead. CMAJ 178(6):715–722Google Scholar
  41. Guo M-T, Yuan Q-B, Yang J (2013) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93(11):2864–2868CrossRefGoogle Scholar
  42. Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6(1):35Google Scholar
  43. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@ TiO2 core—shell composite clusters under UV—irradiation. J Am Chem Soc 127(11):3928–3934CrossRefGoogle Scholar
  44. Hrenovic J, Ivankovic T, Tibljas D (2009) The effect of mineral carrier composition on phosphate-accumulating bacteria immobilization. J Hazard Mater 166(2–3):1377–1382CrossRefGoogle Scholar
  45. Huang J-J, Hu H-Y, Wu Y-H, Wei B, Lu Y (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90(8):2247–2253CrossRefGoogle Scholar
  46. Huang J, Ho W, Wang X (2014) Metal-free disinfection effects induced by graphitic carbon nitride polymers under visible light illumination. Chem Commun 50(33):4338–4340CrossRefGoogle Scholar
  47. Huang S, Xu Y, Xie M, Liu Q, Xu H, Zhao Y, He M, Li H (2017) A Z-scheme magnetic recyclable Ag/AgBr@ CoFe2O4 photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Adv 7(49):30845–30854CrossRefGoogle Scholar
  48. Huang Y-Y, Choi H, Kushida Y, Bhayana B, Wang Y, Hamblin MR (2016) Broad-spectrum antimicrobial effects of photocatalysis using titanium dioxide nanoparticles are strongly potentiated by addition of potassium iodide. Antimicrob Agents Chemother 60(9):5445–5453Google Scholar
  49. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS PublicationsGoogle Scholar
  50. Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nanotechnology in the green economy. Environ Health 13(1):78CrossRefGoogle Scholar
  51. Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A, Brooks AD (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55(3):1053–1062Google Scholar
  52. Kafle B, Acharya S, Thapa S, Poudel S (2016) Structural and optical properties of Fe-doped ZnO transparent thin films. Ceram Int 42(1):1133–1139CrossRefGoogle Scholar
  53. Kang J-K, Lee C-G, Park J-A, Kim S-B, Choi N-C, Park S-J (2013) Adhesion of bacteria to pyrophyllite clay in aqueous solution. Environ Technol 34(6):703–710Google Scholar
  54. Kim SH, Kwak S-Y, Sohn B-H, Park TH (2003) Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membr Sci 211(1):157–165CrossRefGoogle Scholar
  55. Kitajima M, Tohya Y, Matsubara K, Haramoto E, Utagawa E, Katayama H (2010) Chlorine inactivation of human norovirus, murine norovirus and poliovirus in drinking water. Lett Appl Microbiol 51(1):119–121Google Scholar
  56. Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21(10):4631–4641CrossRefGoogle Scholar
  57. Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S (2008) Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24(2):547–550CrossRefGoogle Scholar
  58. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49(1):1–14CrossRefGoogle Scholar
  59. Labro M-T (2012) Immunomodulatory effects of antimicrobial agents. Part II: antiparasitic and antifungal agents. Expert Rev Anti-infect Ther 10(3):341–357Google Scholar
  60. Lapena L, Cerezo M, Garcia-Augustin P (1995) Possible reuse of treated municipal wastewater for Citrus spp. plant irrigation. Bull Environ Contam Toxicol 55(5):697–703Google Scholar
  61. Lei J, Chen Y, Shen F, Wang L, Liu Y, Zhang J (2015) Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. J Alloy Compd 631:328–334CrossRefGoogle Scholar
  62. Levy K, Woster AP, Goldstein RS, Carlton EJ (2016) Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ Sci Technol 50(10):4905–4922Google Scholar
  63. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49Google Scholar
  64. Li J, Shao B, Shen J, Wang S, Wu Y (2013) Occurrence of chloramphenicol-resistance genes as environmental pollutants from swine feedlots. Environ Sci Technol 47(6):2892–2897Google Scholar
  65. Lien L, Lan P, Chuc N, Hoa N, Nhung P, Thoa N, Diwan V, Tamhankar A, Stålsby Lundborg C (2017) Antibiotic resistance and antibiotic resistance genes in Escherichia coli isolates from hospital wastewater in Vietnam. Int J Environ Res Public Health 14(7):699Google Scholar
  66. Liu J, Zhang Y, Lu L, Wu G, Chen W (2012) Self-regenerated solar-driven photocatalytic water-splitting by urea derived graphitic carbon nitride with platinum nanoparticles. Chem Commun 48(70):8826–8828CrossRefGoogle Scholar
  67. Liu L, Bai H, Liu J, Sun DD (2013) Multifunctional graphene oxide-TiO2-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. J Hazard Mater 261:214–223Google Scholar
  68. Longo G, Kasas S (2014) Effects of antibacterial agents and drugs monitored by atomic force microscopy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):230–244CrossRefGoogle Scholar
  69. Luan Y, Jing L, Wu J, Xie M, Feng Y (2014) Long-lived photogenerated charge carriers of 0 0 1-facet-exposed TiO2 with enhanced thermal stability as an efficient photocatalyst. Appl Catal B 147:29–34CrossRefGoogle Scholar
  70. Ma S, Zhan S, Jia Y, Zhou Q (2015) Superior antibacterial activity of Fe3O4–TiO2 nanosheets under solar light. ACS Appl Mater Interfaces 7(39):21875–21883Google Scholar
  71. Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59CrossRefGoogle Scholar
  72. Mamane H, Horovitz I, Lozzi L, Di Camillo D, Avisar D (2014) The role of physical and operational parameters in photocatalysis by N-doped TiO2 sol–gel thin films. Chem Eng J 257:159–169CrossRefGoogle Scholar
  73. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29(1–2):211–214Google Scholar
  74. McGuinness NB, John H, Kavitha MK, Banerjee S, Dionysiou DD, Pillai SC (2016) Self-cleaning photocatalytic activity: materials and applications. Photocatalysis 204–235Google Scholar
  75. McKinney CW, Pruden A (2012) Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environ Sci Technol 46(24):13393–13400Google Scholar
  76. Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1–4):133–139CrossRefGoogle Scholar
  77. Misra AJ, Das S, Rahman AH, Das B, Jayabalan R, Behera SK, Suar M, Tamhankar AJ, Mishra A, Lundborg CS (2018) Doped ZnO nanoparticles impregnated on Kaolinite (Clay): a reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light. J Colloid Interface Sci 530:610–623Google Scholar
  78. Morales-Guio CG, Mayer MT, Yella A, Tilley SD, Grätzel M, Hu X (2015) An optically transparent iron nickel oxide catalyst for solar water splitting. J Am Chem Soc 137(31):9927–9936CrossRefGoogle Scholar
  79. Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45(2):681–693Google Scholar
  80. Muter O (2014) Assessment of bioremediation strategies for explosives-contaminated sites. Biological remediation of explosive residues. Springer, pp 113–148Google Scholar
  81. Nagarajan K, Marimuthu SK, Palanisamy S, Subbiah L (2018) Peptide therapeutics versus superbugs: highlight on current research and advancements. Int J Pept Res Ther 24(1):19–33CrossRefGoogle Scholar
  82. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C 13(3):169–189CrossRefGoogle Scholar
  83. Nalwa HS (2014) A special issue on reviews in nanomedicine, drug delivery and vaccine development. J Biomed Nanotechnol 10(9):1635–1640Google Scholar
  84. Öncü NB, Menceloğlu YZ, Balcıoğlu IA (2011) Comparison of the effectiveness of chlorine, ozone, and photocatalytic disinfection in reducing the risk of antibiotic resistance pollution. J Adv Oxid Technol 14(2):196–203Google Scholar
  85. Ong W-J, Gui MM, Chai S-P, Mohamed AR (2013) Direct growth of carbon nanotubes on Ni/TiO2 as next generation catalysts for photoreduction of CO2 to methane by water under visible light irradiation. RSC Adv 3(14):4505–4509CrossRefGoogle Scholar
  86. Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR (2015) Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy 13:757–770CrossRefGoogle Scholar
  87. Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329Google Scholar
  88. Organization WH (2004) Guidelines for drinking-water quality. World Health OrganizationGoogle Scholar
  89. Organization WH (2014) Antimicrobial resistance: global report on surveillance. World Health OrganizationGoogle Scholar
  90. Otto CC, Haydel SE (2013) Exchangeable ions are responsible for the in vitro antibacterial properties of natural clay mixtures. PLoS ONE 8(5):e64068CrossRefGoogle Scholar
  91. Padmanabhan P, Sreekumar K, Thiyagarajan T, Satpute R, Bhanumurthy K, Sengupta P, Dey G, Warrier K (2006) Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80(11–12):1252–1255CrossRefGoogle Scholar
  92. Parida S, Axelsson‐Robertson R, Rao M, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M (2015) Totally drug‐resistant tuberculosis and adjunct therapies. J Intern Med 277(4):388–405Google Scholar
  93. Pattan G, Kaul G (2014) Health hazards associated with nanomaterials. Toxicol Ind Health 30(6):499–519Google Scholar
  94. Peng X, Ng TW, Huang G, Wang W, An T, Wong PK (2017) Bacterial disinfection in a sunlight/visible-light-driven photocatalytic reactor by recyclable natural magnetic sphalerite. Chemosphere 166:521–527CrossRefGoogle Scholar
  95. Praneeth N, Paria S. Clay-semiconductor nanocomposites for photocatalytic applications. In: Clay minerals: properties, occurrence and usesGoogle Scholar
  96. Praneeth N, Paria S (2017) Clay-semiconductor nanocomposites for photocatalytic applications. Clay Miner Prop Occur Uses 144–184Google Scholar
  97. Prasad K, Lekshmi G, Ostrikov K, Lussini V, Blinco J, Mohandas M, Vasilev K, Bottle S, Bazaka K, Ostrikov K (2017) Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci Rep 7(1):1591Google Scholar
  98. Prestinaci F, Pezzotti P, Pantosti A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathog Global Health 109(7): 309–318Google Scholar
  99. Qing Li Q, Loganath A, Seng Chong Y, Tan J, Philip Obbard J (2006) Persistent organic pollutants and adverse health effects in humans. J Toxicol Environ Health Part A 69(21):1987–2005CrossRefGoogle Scholar
  100. Rahman AH, Misra AJ, Das S, Das B, Jayabalan R, Suar M, Mishra A, Tamhankar AJ, Lundborg CS, Tripathy SK (2018) Mechanistic insight into the disinfection of Salmonella sp. by sun-light assisted sonophotocatalysis using doped ZnO nanoparticles. Chem Eng J 336:476–488CrossRefGoogle Scholar
  101. Rahman S, Khan M, Akib S, Din NBC, Biswas S, Shirazi S (2014) Sustainability of rainwater harvesting system in terms of water quality. Sci World J 2014Google Scholar
  102. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health Part C 27(1):1–35CrossRefGoogle Scholar
  103. Regmi C, Joshi B, Ray SK, Gyawali G, Pandey RP (2018a) Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater. Front Chem 6:33CrossRefGoogle Scholar
  104. Regmi YN, Mann JK, McBride JR, Tao J, Barnes CE, Labbé N, Chmely SC (2018b) Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts. Catal Today 302:190–195CrossRefGoogle Scholar
  105. Rennecker JL, Mariñas BJ, Owens JH, Rice EW (1999) Inactivation of Cryptosporidium parvum oocysts with ozone. Water Res 33(11):2481–2488CrossRefGoogle Scholar
  106. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D (2014) Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Appl Catal B 144:369–378CrossRefGoogle Scholar
  107. Ryu S, Kim BI, Lim J-S, Tan CS, Chun BC (2017) One Health perspectives on emerging public health threats. J Prev Med Public Health 50(6):411CrossRefGoogle Scholar
  108. Saravanan R, Gracia F, Stephen A (2017) Basic principles, mechanism, and challenges of photocatalysis. In: Nanocomposites for visible light-induced photocatalysis. Springer, pp 19–40Google Scholar
  109. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114(19):9919–9986Google Scholar
  110. Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136CrossRefGoogle Scholar
  111. Sciacca F, Rengifo-Herrera JA, Wéthé J, Pulgarin C (2010) Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere 78(9):1186–1191CrossRefGoogle Scholar
  112. Selma MV, Beltrán D, Allende A, Chacón-Vera E, Gil MI (2007) Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiol 24(5):492–499CrossRefGoogle Scholar
  113. Shan W, Hu Y, Bai Z, Zheng M, Wei C (2016) In situ preparation of g-C3N4/bismuth-based oxide nanocomposites with enhanced photocatalytic activity. Appl Catal B 188:1–12CrossRefGoogle Scholar
  114. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nanosci Technol Collec Rev Nat J (World Scientific) 337–346Google Scholar
  115. Siddiquey IA, Furusawa T, Sato M, Honda K, Suzuki N (2008) Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigm 76(3):754–759CrossRefGoogle Scholar
  116. Soni S, Dave G, Henderson M, Gibaud A (2013) Visible light induced cell damage of Gram positive bacteria by N-doped TiO2 mesoporous thin films. Thin Solid Films 531:559–565CrossRefGoogle Scholar
  117. Sturm R (2015) A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs. Ann Transl Med 3(19)Google Scholar
  118. Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014Google Scholar
  119. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@ SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5(6):1456–1462CrossRefGoogle Scholar
  120. Vale G, Mehennaoui K, Cambier S, Libralato G, Jomini S, Domingos RF (2016) Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: a critical overview. Aquat Toxicol 170:162–174CrossRefGoogle Scholar
  121. Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther 40(4):277Google Scholar
  122. Viessman W, Hammer MJ, Perez EM, Chadik PA (1998) Water supply and pollution controlGoogle Scholar
  123. Von Gunten U (2003) Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37(7):1469–1487CrossRefGoogle Scholar
  124. Wang K, Li Q, Liu B, Cheng B, Ho W, Yu J (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl Catal B 176:44–52CrossRefGoogle Scholar
  125. Wang L, Mao J, Zhang G-H, Tu M-J (2007) Nano-cerium-element-doped titanium dioxide induces apoptosis of Bel 7402 human hepatoma cells in the presence of visible light. World J Gastroenterol WJG 13(29):4011Google Scholar
  126. Wang L, Pan Y, Li J, Qin H (2008) Magnetic properties related to thermal treatment of pyrite. Sci China Ser D Earth Sci 51(8):1144–1153CrossRefGoogle Scholar
  127. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1998) Photogeneration of highly amphiphilic TiO2 surfaces. Adv Mater 10(2):135–138CrossRefGoogle Scholar
  128. Weaver CE, Pollard LD (2011) The chemistry of clay minerals. ElsevierGoogle Scholar
  129. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS nano 2(7):1487–1491Google Scholar
  130. Xia D, Ng TW, An T, Li G, Li Y, Yip HY, Zhao H, Lu A, Wong P-K (2013) A recyclable mineral catalyst for visible-light-driven photocatalytic inactivation of bacteria: natural magnetic sphalerite. Environ Sci Technol 47(19):11166–11173Google Scholar
  131. Yan L, Feng M, Liu J, Wang L, Wang Z (2016) Antioxidant defenses and histological changes in Carassius auratus after combined exposure to zinc and three multi-walled carbon nanotubes. Ecotoxicol Environ Saf 125:61–71Google Scholar
  132. Yang K, LeJeune J, Alsdorf D, Lu B, Shum C, Liang S (2012) Global distribution of outbreaks of water-associated infectious diseases. PLoS Negl Trop Dis 6(2):e1483Google Scholar
  133. Yaya A, Agyei-Tuffour B, Dodoo-Arhin D, Nyankson E, Annan E, Konadu D, Sinayobye E, Baryeh E, Ewels C (2012) Layered nanomaterials-a review. Global J Eng Des Technol 2:32–41Google Scholar
  134. Yin L, Yuan Y-P, Cao S-W, Zhang Z, Xue C (2014) Enhanced visible-light-driven photocatalytic hydrogen generation over gC3N4 through loading the noble metal-free NiS2 cocatalyst. RSC Adv 4(12):6127–6132CrossRefGoogle Scholar
  135. Yu JC, Ho W, Yu J, Yip H, Wong PK, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39(4):1175–1179Google Scholar
  136. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93CrossRefGoogle Scholar
  137. Zhang L, Yang H, Xie X, Zhang F, Li L (2009) Preparation and photocatalytic activity of hollow ZnSe microspheres via Ostwald ripening. J Alloy Compd 473(1–2):65–70Google Scholar
  138. Zhang N, Liu S, Xu Y-J (2012) Recent progress on metal core@ semiconductor shell nanocomposites as a promising type of photocatalyst. Nanoscale 4(7):2227–2238CrossRefGoogle Scholar
  139. Zhang X, Dong S, Zhou X, Yan L, Chen G, Dong S, Zhou D (2015) A facile one-pot synthesis of Er–Al co-doped ZnO nanoparticles with enhanced photocatalytic performance under visible light. Mater Lett 143:312–314CrossRefGoogle Scholar
  140. Zhang Y, Zhu Y, Yu J, Yang D, Ng TW, Wong PK, Jimmy CY (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5(14):6307–6310CrossRefGoogle Scholar
  141. Zhao H, Yu H, Quan X, Chen S, Zhang Y, Zhao H, Wang H (2014) Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl Catal B 152:46–50CrossRefGoogle Scholar
  142. Zhao J, Deng B, Lv M, Li J, Zhang Y, Jiang H, Peng C, Li J, Shi J, Huang Q (2013) Graphene oxide‐based antibacterial cotton fabrics. Adv Healthc Mater 2(9):1259–1266Google Scholar
  143. Zhong D, Ma W, Jiang X, Yuan Y, Yuan Y, Wang Z, Fang T, Huang W (2017) Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review. In: IOP conference series: earth and environmental science. IOP PublishingGoogle Scholar
  144. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A 43(3):278–284CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sourav Das
    • 1
    • 2
  • Ananyo Jyoti Misra
    • 1
    • 2
  • A. P. Habeeb Rahman
    • 1
    • 2
  • Aradhana Basu
    • 2
  • Amrita Mishra
    • 2
  • Ashok J. Tamhankar
    • 2
    • 3
  • Cecilia Stålsby Lundborg
    • 3
  • Suraj K. Tripathy
    • 1
    • 2
    Email author
  1. 1.School of Chemical TechnologyKalinga Institute of Industrial Technology (KIIT)BhubaneswarIndia
  2. 2.School of BiotechnologyKalinga Institute of Industrial Technology (KIIT)BhubaneswarIndia
  3. 3.Department of Public Health SciencesKarolinska InstituteStockholmSweden

Personalised recommendations