Advertisement

Versatile 1-D Nanostructures for Green Energy Conversion and Storage Devices

  • R. R. DeshmukhEmail author
  • A. S. Kalekar
  • S. R. Khaladkar
  • O. C. Maurya
Chapter
  • 33 Downloads
Part of the Green Energy and Technology book series (GREEN)

Abstract

Increasing population and living standards demands high energy provisions; but considering pollution issues and depleting fossil fuel reservoirs, the fulfillment of the energy demands through eco-friendly/green renewable energy technologies have become an urgent need. Among all renewable energy systems, photovoltaic solar cells (PSC) with energy storage systems (ESS) such as batteries or supercapacitors have attracted great attention as the next generation of energy suppliers. However, the efficiency of PSC and ESS inherently depends on the electrode material’s properties, like structure, size, shape, charge transport properties, active surface area, and so on. Owing to maximum active surface area, high surface to volume ratio, fast charge transport, efficient light harvesting, and simplistic eco-friendly growth, the one-dimensional (1-D) nanostructures has become a promising solution to the fabrication of efficient PSC and ESS. Here in this chapter we have discussed simple, cost-effective and environmentally benign growth of 1-D nanostructures and their efficient application in PSC and ESS. This chapter brings you updated literature survey on green synthesis of 1-D nanostructures applied in PSC and ESS.

Keywords

1D nanostructures Solar cells Batteries Supercapacitors 

References

  1. Ameen S et al (2012) Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: solar energy conversion. ACS Appl Mater Interfaces (American Chemical Society) 4(8):4405–4412.  https://doi.org/10.1021/am301064jCrossRefGoogle Scholar
  2. Bhaway SM et al (2016) Hierarchical electrospun and cooperatively assembled nanoporous Ni/NiO/MnOx/Carbon nanofiber composites for lithium ion battery anodes. ACS Appl Mater Interfaces 8(30):19484–19493.  https://doi.org/10.1021/acsami.6b05592CrossRefGoogle Scholar
  3. Bian J et al (2014) Carbon dot loading and TiO2 nanorod length dependence of photoelectrochemical properties in carbon dot/TiO2 nanorod array nanocomposites. ACS Appl Mater Interfaces 6(7):4883–4890.  https://doi.org/10.1021/am4059183CrossRefGoogle Scholar
  4. Borchert H et al (2012) Vertically oriented carbon nanostructures and their application potential for polymer-based solar cells. J Phys Chem C 116(1):412–419.  https://doi.org/10.1021/jp2095592CrossRefGoogle Scholar
  5. British Petroleum (2018) 67th edition Contents is one of the most widely respected, Statistical review of world energy. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf. Accessed 14 May 2019
  6. Chan CK et al (2008) High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnol 3(1):31–5.  https://doi.org/10.1038/nnano.2007.411
  7. Chen C et al (2018) One-dimensional nanomaterials for energy storage. J Phys D Appl Phys (IOP Publishing) 51(11).  https://doi.org/10.1088/1361-6463/aaa98d
  8. Chen J, Wiley BJ, Xia Y (2007) One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir 23(8):4120–4129.  https://doi.org/10.1021/la063193yCrossRefGoogle Scholar
  9. Chen M et al (2014) Fabrication of core-shell α-Fe2O3@ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl Mater Interfaces 6(6):4514–4523.  https://doi.org/10.1021/am500294mCrossRefGoogle Scholar
  10. Chen Q et al (2018) Selflating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes. J Mater Chem A (Royal Society of Chemistry) 6(15):6356–6362.  https://doi.org/10.1039/c8ta00587gCrossRefGoogle Scholar
  11. Chen W et al (2011) Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett (American Chemical Society) 11(9):3707–3713.  https://doi.org/10.1021/nl201715qCrossRefGoogle Scholar
  12. Cho JW et al (2012) Bulk heterojunction formation between indium tin oxide nanorods and CuInS2 nanoparticles for inorganic thin film solar cell applications. ACS Appl Mater Interfaces (American Chemical Society) 4(2):849–853.  https://doi.org/10.1021/am201524zCrossRefGoogle Scholar
  13. Choi H, Chen WT, Kamat PV (2012) Know thy nano neighbor. plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6(5):4418–4427.  https://doi.org/10.1021/nn301137rCrossRefGoogle Scholar
  14. Goswami DY, Besarati SM (2013) World Energy Council 2013 World energy resources: solar, pp 1–28. http://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_8_Solar_revised.pdf
  15. Duay J et al (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: Mechanism and supercapacitor properties. ACS Nano 7(2):1200–1214.  https://doi.org/10.1021/nn3056077CrossRefGoogle Scholar
  16. Duong B et al (2014) High throughput printing of nanostructured carbon electrodes for supercapacitors. Adv Mater Interfaces 1(1):1–5.  https://doi.org/10.1002/admi.201300014CrossRefGoogle Scholar
  17. Endut Z, Hamdi M, Basirun WJ (2013) An investigation on formation and electrochemical capacitance of anodized titania nanotubes. Appl Surf Sci (Elsevier B.V.) 280:962–966.  https://doi.org/10.1016/j.apsusc.2013.05.118
  18. Eric Rosenbloom (2006) A problem with wind power [AWEO.org]. http://www.aweo.org/problemwithwind.html
  19. Futaba DN et al (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994.  https://doi.org/10.1038/nmat1782CrossRefGoogle Scholar
  20. Ganguly A et al (2014a) Production and storage of energy with one-dimensional semiconductor nanostructures. Crit Rev Solid State Mater Sci 39(2):109–153.  https://doi.org/10.1080/10408436.2013.796909CrossRefGoogle Scholar
  21. Ganguly A et al (2014b) Production and storage of energy with one-dimensional semiconductor nanostructures. Crit Rev Solid State Mater Sci (Taylor & Francis) 39(2):109–153.  https://doi.org/10.1080/10408436.2013.796909CrossRefGoogle Scholar
  22. Ge M et al (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12(5):2318–2323.  https://doi.org/10.1021/nl300206eCrossRefGoogle Scholar
  23. Ghosh D et al (2018) Photoactive core-shell nanorods as bifunctional electrodes for boosting the performance of quantum dot sensitized solar cells and photoelectrochemical cells. Chem Mater (American Chemical Society) 30(17):6071–6081.  https://doi.org/10.1021/acs.chemmater.8b02504CrossRefGoogle Scholar
  24. Giannuzzi R et al (2014) Ultrathin TiO2 (B) nanorods with superior lithium-ion storage performance. ACS Appl Mater Interfaces 6(3):1933–1943.  https://doi.org/10.1021/am4049833CrossRefGoogle Scholar
  25. Gopi CVVM et al (2018) CNT@rGO@MoCuSe composite as an efficient counter electrode for quantum dot-sensitized solar cells. ACS Appl Mater Interfaces (American Chemical Society) 10(12):10036–10042.  https://doi.org/10.1021/acsami.7b18526CrossRefGoogle Scholar
  26. Gujar TP et al (2008) Formation of CdO films from chemically deposited Cd(OH)2 films as a precursor. Appl Surf Sci 254(13):3813–3818.  https://doi.org/10.1016/j.apsusc.2007.12.015CrossRefGoogle Scholar
  27. Han N, Wang F, Ho JC (2011) One-dimensional nanostructured materials for solar energy harvesting. Nanomater Energy 1(1):4–17.  https://doi.org/10.1680/nme.11.00005CrossRefGoogle Scholar
  28. Huang Z et al (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater (Germany) 23(2):285–308.  https://doi.org/10.1002/adma.201001784CrossRefGoogle Scholar
  29. Im JH et al (2015) Nanowire perovskite solar cell. Nano Lett (American Chemical Society) 15(3):2120–2126.  https://doi.org/10.1021/acs.nanolett.5b00046CrossRefGoogle Scholar
  30. Jang YJ et al (2016) Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 Using a ZnTe-based photocathode and a perovskite solar cell in tandem. ACS Nano (American Chemical Society) 10(7):6980–6987.  https://doi.org/10.1021/acsnano.6b02965CrossRefGoogle Scholar
  31. Jeevanandam J et al (2018) Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074.  https://doi.org/10.3762/bjnano.9.98CrossRefGoogle Scholar
  32. Kamble A, Sinha BB et al (2015a) Boosting the performance of ZnO/CdS core-shell nanorod array-based solar cells by ZnS surface treatment. Isr J Chem 55(9):1011–1016.  https://doi.org/10.1002/ijch.201400205CrossRefGoogle Scholar
  33. Kamble A, Sinha B et al (2015b) Facile linker free growth of CdS nanoshell on 1-D ZnO: solar cell application. Electron Mater Lett 11(2):171–179.  https://doi.org/10.1007/s13391-014-4236-xCrossRefGoogle Scholar
  34. Kamble A et al (2016) Sulfur ion concentration dependent morphological evolution of CdS thin films and its subsequent effect on photo-electrochemical performance. Phys Chem Chem Phys (Royal Society of Chemistry) 18(40):28024–28032.  https://doi.org/10.1039/c6cp00903dCrossRefGoogle Scholar
  35. Kamble AS, Pawar RC, Tarwal NL et al (2011) Ethanol sensing properties of chemosynthesized CdO nanowires and nanowalls. Mater Lett (Elsevier B.V.) 65(10):1488–1491.  https://doi.org/10.1016/j.matlet.2011.02.049
  36. Kamble AS, Pawar RC, Patil JY et al (2011) From nanowires to cubes of CdO: ethanol gas response. J Alloys Compd (Elsevier B.V.) 509(3):1035–1039.  https://doi.org/10.1016/j.jallcom.2010.09.166
  37. Kamble AS et al (2014) Effect of hydroxide anion generating agents on growth and properties of ZnO nanorod arrays. Electrochim Acta (Elsevier Ltd) 149:386–393.  https://doi.org/10.1016/j.electacta.2014.10.049CrossRefGoogle Scholar
  38. Kamble AS et al (2017) Influence of surfactants on electrochemical growth of CdSe nanostructures and their photoelectrochemical performance. J Solid State Electrochem 21(9):2649–2653.  https://doi.org/10.1007/s10008-017-3651-yCrossRefGoogle Scholar
  39. Kim BS et al (2009) Catalyst-free growth of single-crystal silicon and germanium nanowires. Nano Lett (American Chemical Society) 9(2):864–869.  https://doi.org/10.1021/n1803752wCrossRefGoogle Scholar
  40. Krishnapriya R et al (2017) Unveiling the Co2+ ion doping-induced hierarchical shape evolution of ZnO: in correlation with magnetic and photovoltaic performance. ACS Sustain Chem Eng (American Chemical Society) 5(11):9981–9992.  https://doi.org/10.1021/acssuschemeng.7b01918
  41. Leschkies KS et al (2007) Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett (American Chemical Society) 7(6):1793–1798.  https://doi.org/10.1021/nl070430oCrossRefGoogle Scholar
  42. Li Chen et al (2013) Photovoltaic property of a vertically aligned carbon nanotube hexagonal network assembled with CdS quantum dots. ACS Appl Mater Interfaces 5(15):7400–7404.  https://doi.org/10.1021/am401725xCrossRefGoogle Scholar
  43. Liu D et al (2008a) TiO2 nanotube arrays annealed in N2 for efficient lithium-ion intercalation. J Phys Chem C 112(30):11175–11180.  https://doi.org/10.1021/jp801300jCrossRefGoogle Scholar
  44. Liu J et al (2009) Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J Mater Chem 19(13):1859–1864.  https://doi.org/10.1039/b817036cCrossRefGoogle Scholar
  45. Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19(21).  https://doi.org/10.1088/0957-4484/19/21/215710
  46. Liu R, Sang BL (2008) MnO2/poly(3,4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage. J Am Chem Soc 130(10):2942–2943.  https://doi.org/10.1021/ja7112382CrossRefGoogle Scholar
  47. Liu Y et al (2013) Controllable synthesis of Cu2In2ZnS5 nano/microcrystals and hierarchical films and applications in dye-sensitized solar cells. J Phys Chem C 117(20):10296–10301.  https://doi.org/10.1021/jp401998pCrossRefGoogle Scholar
  48. Lu L et al (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett (American Chemical Society) 13(1):59–64.  https://doi.org/10.1021/nl3034398CrossRefGoogle Scholar
  49. Lu X et al (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26(19):3148–3155.  https://doi.org/10.1002/adma.201305851CrossRefGoogle Scholar
  50. Mai L et al (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10(11):4750–4755.  https://doi.org/10.1021/nl103343wCrossRefGoogle Scholar
  51. Mai L et al (2013) Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. Adv Mater 25(21):2969–2973.  https://doi.org/10.1002/adma.201205185CrossRefGoogle Scholar
  52. Mali SS et al (2017) Secondary hydrothermally processed engineered titanium dioxide nanostructures for efficient perovskite solar cells. Energy Technol 5(10):1775–1787.  https://doi.org/10.1002/ente.201700030CrossRefGoogle Scholar
  53. Meng X, Deng D (2015) Core-shell Ti@Si coaxial nanorod arrays formed directly on current collectors for lithium-ion batteries. ACS Appl Mater Interfaces 7(12):6867–6874.  https://doi.org/10.1021/acsami.5b00492CrossRefGoogle Scholar
  54. Parize R et al (2017) ZnO/TiO2/Sb2S3 core-shell nanowire heterostructure for extremely thin absorber solar cells. J Phys Chem C (American Chemical Society) 121(18):9672–9680.  https://doi.org/10.1021/acs.jpcc.7b00178CrossRefGoogle Scholar
  55. Patil JV et al (2017) Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach. Appl Surf Sci (Elsevier B.V.) 423:641–674.  https://doi.org/10.1016/j.apsusc.2017.06.116
  56. Peng C, Hu D, Chen GZ (2011) Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on “Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties”. Chem Commun 47(14):4105–4107.  https://doi.org/10.1039/c1cc10675aCrossRefGoogle Scholar
  57. de Riccardis MF et al (2012) Functional characterisations of hybrid nanocomposite films based on polyaniline and carbon nanotubes. Adv Sci Technol 79:81–86.  https://doi.org/10.4028/www.scientific.net/ast.79.81CrossRefGoogle Scholar
  58. Sadhu S, Poddar P (2014) Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity. J Phys Chem C 118(33):19363–19373.  https://doi.org/10.1021/jp5023983CrossRefGoogle Scholar
  59. Schlager JB et al (2006) Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy. Appl Phys Lett (American Institute of Physics) 88(21):213106.  https://doi.org/10.1063/1.2206133CrossRefGoogle Scholar
  60. Shi SC et al (2005) Growth of single-crystalline wurtzite aluminum nitride nanotips with a self-selective apex angle. Adv Func Mater 15(5):781–786.  https://doi.org/10.1002/adfm.200400324CrossRefGoogle Scholar
  61. Shimoda H et al (2002) Lithium intercalation into etched single-wall carbon nanotubes. Physica B 323(1–4):133–134.  https://doi.org/10.1016/S0921-4526(02)00876-1CrossRefGoogle Scholar
  62. Shinde VR et al (2008) A solution chemistry approach for the selective formation of ultralong nanowire bundles of crystalline Cd(OH)2 on substrates. Adv Mater 20(5):1008–1012.  https://doi.org/10.1002/adma.200701828CrossRefGoogle Scholar
  63. Soam A et al (2017) Fabrication of silicon nanowires based on-chip micro-supercapacitor. Chem Phys Lett (Elsevier B.V.) 678:46–50.  https://doi.org/10.1016/j.cplett.2017.04.019
  64. Song T et al (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10(5):1710–1716.  https://doi.org/10.1021/nl100086eCrossRefGoogle Scholar
  65. Tang X et al (2015) Hierarchical Fe3O4@Fe2O3 core-shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl Mater Interfaces 7(49):27518–27525.  https://doi.org/10.1021/acsami.5b09766CrossRefGoogle Scholar
  66. Thaxton CS et al (2009) Nanoparticle-based bio-barcode assay redefines “undetectable” PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci 106(44):18437–18442.  https://doi.org/10.1073/pnas.0904719106CrossRefGoogle Scholar
  67. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progr Mater Sci (Elsevier Ltd) 57(4):724–803.  https://doi.org/10.1016/j.pmatsci.2011.08.003CrossRefGoogle Scholar
  68. Varadharajaperumal S et al (2017) Morphology controlled n-type TiO2 and stoichiometry adjusted p-type Cu2ZnSnS4 thin films for photovoltaic applications. Cryst Growth Des (American Chemical Society) 17(10):5154–5162.  https://doi.org/10.1021/acs.cgd.7b00632CrossRefGoogle Scholar
  69. Wang D et al (2014a) Novel Li2MnO3 nanowire anode with internal Li-enrichment for use in a Li-ion battery. Nanoscale 6(14):8124–8129.  https://doi.org/10.1039/c4nr01941eCrossRefGoogle Scholar
  70. Wang F et al (2014b) One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. J Phys Chem C (American Chemical Society) 118(34):19589–19598.  https://doi.org/10.1021/jp505737uCrossRefGoogle Scholar
  71. Wang GX et al (2006) Growth and lithium storage properties of vertically aligned carbon nanotubes. Met Mater Int 12(5):413–416.  https://doi.org/10.1007/BF03027708CrossRefGoogle Scholar
  72. Wang K et al (2014c) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1):14–31.  https://doi.org/10.1002/smll.201301991CrossRefGoogle Scholar
  73. Wang X et al (2013) Electron transport and recombination in photoanode of electrospun TiO2 nanotubes for dye-sensitized solar cells. J Phys Chem C (American Chemical Society) 117(4):1641–1646.  https://doi.org/10.1021/jp311725gCrossRefGoogle Scholar
  74. Wei J et al (2007) Double-walled carbon nanotube solar cells. Nano Lett (American Chemical Society) 7(8):2317–2321.  https://doi.org/10.1021/nl070961cCrossRefGoogle Scholar
  75. Wei Q et al (2017) Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage. Adv Mater 29(20).  https://doi.org/10.1002/adma.201602300
  76. Windmills for electricity—where generating electricity from the wind isn’t a dream! (no date). https://windmillsforelectricity.com/. Accessed 3 May 2019
  77. Wu Y et al (2002) Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. Chemistry (Weinheim an der Bergstrasse, Germany) 8(6):1260–1268. http://www.ncbi.nlm.nih.gov/pubmed/11921209
  78. Xia H et al (2010) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sour (Elsevier B.V.) 195(13):4410–4413.  https://doi.org/10.1016/j.jpowsour.2010.01.075
  79. Xia XH et al (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2(5):1835–1841.  https://doi.org/10.1039/c1ra00771hCrossRefGoogle Scholar
  80. Yang L et al (2011) Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl Mater Interfaces (American Chemical Society) 3(10):4075–4084.  https://doi.org/10.1021/am2009585CrossRefGoogle Scholar
  81. Yang Y et al (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett (American Chemical Society) 9(12):4109–4114.  https://doi.org/10.1021/nl902315uCrossRefGoogle Scholar
  82. Yedluri AK, Kim HJ (2019) Enhanced electrochemical performance of nanoplate nickel cobaltite (NiCo2O4) supercapacitor applications. RSC Adv (Royal Society of Chemistry) 9(2):1115–1122.  https://doi.org/10.1039/c8ra09081eCrossRefGoogle Scholar
  83. Yu L et al (2012) Hierarchical NiCo2O4 @MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49(2):137–139.  https://doi.org/10.1039/c2cc37117kCrossRefGoogle Scholar
  84. Yu Z, Thomas J (2014) Energy storing electrical cables: integrating energy storage and electrical conduction. Adv Mater 26(25):4279–4285.  https://doi.org/10.1002/adma.201400440CrossRefGoogle Scholar
  85. Yuan L et al (2012) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6(1):656–661.  https://doi.org/10.1021/nn2041279CrossRefGoogle Scholar
  86. Zhang GQ et al (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5(11):9453–9456.  https://doi.org/10.1039/c2ee22572gCrossRefGoogle Scholar
  87. Zhang J et al (2014) Nitrogen-doped hierarchical porous carbon nanowhisker ensembles on carbon nanofiber for high-performance supercapacitors. ACS Sustain Chem Eng 2(6):1525–1533.  https://doi.org/10.1021/sc500221sCrossRefGoogle Scholar
  88. Zhang Y et al (2015) An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Phys Chem Chem Phys (Royal Society of Chemistry) 17(24):15764–15770.  https://doi.org/10.1039/c5cp01227aCrossRefGoogle Scholar
  89. Zhu H et al (2019) Perovskite and conjugated polymer wrapped semiconducting carbon nanotube hybrid films for high-performance transistors and phototransistors. ACS Nano (American Chemical Society) 13(4):3971–3981.  https://doi.org/10.1021/acsnano.8b07567CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • R. R. Deshmukh
    • 1
    Email author
  • A. S. Kalekar
    • 1
  • S. R. Khaladkar
    • 1
  • O. C. Maurya
    • 1
  1. 1.Department of PhysicsInstitute of Chemical TechnologyMatunga, MumbaiIndia

Personalised recommendations