Advertisement

Matter Multiplets

  • Edoardo Lauria
  • Antoine Van Proeyen
Chapter
  • 66 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 966)

Abstract

After the Weyl multiplet is introduced, we can now define matter multiplets whose transformations respect the algebra with structure functions that depend on the fields of the Weyl multiplet. We treat here vector multiplets and hypermultiplets. We define them for D = 4, 5 and 6, first for rigid supersymmetry and then for the superconformal theory. In the second part of this chapter we define actions for these multiplets, which will be the basis for the further chapters.

References

  1. 1.
    M. Günaydin, M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell–Einstein supergravity theories coupled to tensor multiplets. Nucl. Phys. B572, 131–150 (2000). https://doi.org/10.1016/S0550-3213(99)00801-9, arXiv:hep-th/9912027 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Günaydin, M. Zagermann, The vacua of 5d, N = 2 gauged Yang–Mills/Einstein/tensor supergravity: Abelian case. Phys. Rev. D62, 044028 (2000) .  https://doi.org/10.1103/PhysRevD.62.044028, arXiv:hep-th/0002228 [hep-th]
  3. 3.
    M. Günaydin, M. Zagermann, Gauging the full R-symmetry group in five-dimensional, N = 2 Yang–Mills/Einstein/tensor supergravity. Phys. Rev. D63, 064023 (2001).  https://doi.org/10.1103/PhysRevD.63.064023, arXiv:hep-th/0004117 [hep-th]
  4. 4.
    A. Ceresole, G. Dall’Agata, General matter coupled \(\mathcal {N} = 2\), D = 5 gauged supergravity. Nucl. Phys. B585, 143–170 (2000). https://doi.org/10.1016/S0550-3213(00)00339-4, arXiv:hep-th/0004111 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N = 2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015–3041 (2004). https://doi.org/10.1088/0264-9381/23/23/C01,10.1088/0264-9381/21/12/013, arXiv:hep-th/0403045[hep-th], erratum 23 (2006) 7149
  6. 6.
    B. de Wit, J.W. van Holten, A. Van Proeyen, Structure of N = 2 supergravity. Nucl. Phys. B184, 77–108 (1981). https://doi.org/10.1016/0550-3213(83)90548-5,10.1016/0550-3213(81)90211-X, [Erratum: Nucl. Phys.B222,516(1983)]
  7. 7.
    B. de Wit, R. Philippe, A. Van Proeyen, The improved tensor multiplet in N = 2 supergravity. Nucl. Phys. B219, 143–166 (1983). https://doi.org/10.1016/0550-3213(83)90432-7 ADSCrossRefGoogle Scholar
  8. 8.
    B. de Wit, F. Saueressig, Off-shell N = 2 tensor supermultiplets. J. High Energy Phys. 09, 062 (2006). https://doi.org/10.1088/1126-6708/2006/09/062, arXiv:hep-th/0606148 [hep-th] CrossRefGoogle Scholar
  9. 9.
    G. Dall’Agata, R. D’Auria, L. Sommovigo, S. Vaulá, D = 4, \(\mathcal {N}=2\) gauged supergravity in the presence of tensor multiplets. Nucl. Phys. B682, 243–264 (2004). https://doi.org/10.1016/j.nuclphysb.2004.01.014, arXiv:hep-th/0312210 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Sommovigo, S. Vaulà, D = 4, N = 2 supergravity with abelian electric and magnetic charge. Phys. Lett. B602, 130–136 (2004). https://doi.org/10.1016/j.physletb.2004.09.058, arXiv:hep-th/0407205 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. D’Auria, L. Sommovigo, S. Vaulà, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes. J. High Energy Phys. 0411, 028 (2004). https://doi.org/10.1088/1126-6708/2004/11/028, arXiv:hep-th/0409097 [hep-th] MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. Cribiori, G. Dall’Agata, On the off-shell formulation of N = 2 supergravity with tensor multiplets. J. High Energy Phys. 08, 132 (2018).  https://doi.org/10.1007/JHEP08(2018)132, arXiv:1803.08059 [hep-th]
  13. 13.
    J. De Rydt, B. Vercnocke, De Lagrangiaan van vector- en hypermultipletten inN = 2 supergravitatie, Thesis Licenciaat, Katholieke Universiteit Leuven, Leuven, 2006Google Scholar
  14. 14.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, R. Halbersma, S. Vandoren, A. Van Proeyen, Superconformal N = 2, D = 5 matter with and without actions. J. High Energy Phys. 10, 045 (2002). https://doi.org/10.1088/1126-6708/2002/10/045, arXiv:hep-th/0205230 [hep-th] CrossRefGoogle Scholar
  15. 15.
    T. Kugo, K. Ohashi, Supergravity tensor calculus in 5D from 6D. Prog. Theor. Phys. 104, 835–865 (2000).  https://doi.org/10.1143/PTP.104.835, arXiv:hep-ph/0006231 [hep-ph] ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    T. Kugo, K. Ohashi, Off-shell d = 5 supergravity coupled to matter–Yang–Mills system. Prog. Theor. Phys. 105, 323–353 (2001).  https://doi.org/10.1143/PTP.105.323, arXiv:hep-ph/0010288 [hep-ph] ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    C. Pope, Lectures on Kaluza-Klein. http://people.physics.tamu.edu/pope/
  18. 18.
  19. 19.
    A. Van Proeyen, Vector multiplets in N = 2 supersymmetry and its associated moduli spaces, in 1995 Summer school in High Energy Physics and Cosmology, eds. by E. Gava et al. The ICTP series in theoretical physics, vol.12 (World Scientific, Singapore, 1997), p.256. hep-th/9512139
  20. 20.
    I. Antoniadis, H. Partouche, T.R. Taylor, Spontaneous breaking of N = 2 global supersymmetry. Phys. Lett. B372, 83–87 (1996). https://doi.org/10.1016/0370-2693(96)00028-7, arXiv:hep-th/9512006 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Cribiori, S. Lanza, On the dynamical origin of parameters in \(\mathcal {N}=2\) supersymmetry. Eur. Phys. J. C79(1), 32 (2019).  https://doi.org/10.1140/epjc/s10052-019-6545-6, arXiv:1810.11425 [hep-th]
  22. 22.
    I. Antoniadis, H. Jiang, O. Lacombe, \(\mathcal N=2\) supersymmetry deformations, electromagnetic duality and Dirac-Born-Infeld actions. J. High Energy Phys. 07, 147 (2019).  https://doi.org/10.1007/JHEP07(2019)147, arXiv:1904.06339 [hep-th]
  23. 23.
    M. de Roo, J.W. van Holten, B. de Wit, A. Van Proeyen, Chiral superfields in N = 2 supergravity. Nucl. Phys. B173, 175–188 (1980). https://doi.org/10.1016/0550-3213(80)90449-6 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469–498 (1984). https://doi.org/10.1088/0264-9381/1/5/004, [Erratum: Class. Quant. Grav.2,127(1985)]ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic superspace, in Cambridge Monographs on Mathematical Physics (Cambridge University, Cambridge, 2007).  https://doi.org/10.1017/CBO9780511535109, http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/harmonic-superspace?format=PB
  26. 26.
    A. Karlhede, U. Lindström, M. Rocek, Selfinteracting tensor multiplets in N = 2 superspace. Phys. Lett. 147B, 297–300 (1984). https://doi.org/10.1016/0370-2693(84)90120-5 ADSCrossRefGoogle Scholar
  27. 27.
    U. Lindström, M. Roček, New hyperkähler metrics and new supermultiplets. Commun. Math. Phys. 115, 21 (1988). https://doi.org/10.1007/BF01238851 ADSCrossRefGoogle Scholar
  28. 28.
    U. Lindström, M. Roček, N = 2 super Yang–Mills theory in projective superspace. Commun. Math. Phys. 128, 191 (1990). https://doi.org/10.1007/BF02097052 ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    U. Lindström, M. Roček, Properties of hyperkähler manifolds and their twistor spaces. Commun. Math. Phys. 293, 257–278 (2010). https://doi.org/10.1007/s00220-009-0923-0, arXiv:0807.1366 [hep-th] ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Kuzenko, Lectures on nonlinear sigma-models in projective superspace. J. Phys. A43, 443001 (2010). https://doi.org/10.1088/1751-8113/43/44/443001, arXiv:1004.0880 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    B. de Wit, B. Kleijn, S. Vandoren, Rigid N = 2 superconformal hypermultiplets, in Supersymmetries and Quantum Symmetries. Proceeding of International Seminars, Dubna (1997), eds. by J. Wess, E.A. Ivanov. Lecture Notes in Physics, vol. 524 (Springer, Berlin, 1999), p. 37. hep-th/9808160
  32. 32.
    B. de Wit, B. Kleijn, S. Vandoren, Superconformal hypermultiplets. Nucl. Phys. B568, 475–502 (2000). https://doi.org/10.1016/S0550-3213(99)00726-9, arXiv:hep-th/9909228 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Cordaro, P. Frè, L. Gualtieri, P. Termonia, M. Trigiante, N = 8 gaugings revisited: an exhaustive classification. Nucl. Phys. B532, 245–279 (1998). https://doi.org/10.1016/S0550-3213(98)00449-0, arXiv:hep-th/9804056 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Nicolai, H. Samtleben, Compact and noncompact gauged maximal supergravities in three dimensions. J. High Energy Phys. 04, 022 (2001). https://doi.org/10.1088/1126-6708/2001/04/022, arXiv:hep-th/0103032 [hep-th] MathSciNetCrossRefGoogle Scholar
  35. 35.
    B. de Wit, H. Samtleben, M. Trigiante, Magnetic charges in local field theory. J. High Energy Phys. 09, 016 (2005). https://doi.org/10.1088/1126-6708/2005/09/016, arXiv:hep-th/0507289 [hep-th] MathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Samtleben, Lectures on gauged supergravity and flux compactifications. Class. Quant. Grav. 25, 214002 (2008). https://doi.org/10.1088/0264-9381/25/21/214002, arXiv:0808.4076 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    B. de Wit, P.G. Lauwers, A. Van Proeyen, Lagrangians of N = 2 supergravity–matter systems. Nucl. Phys. B255, 569–608 (1985). https://doi.org/10.1016/0550-3213(85)90154-3 ADSCrossRefGoogle Scholar
  38. 38.
    B. de Wit, C.M. Hull, M. Roček, New topological terms in gauge invariant actions. Phys. Lett. B184, 233–238 (1987). https://doi.org/10.1016/0370-2693(87)90573-9 ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Günaydin, G. Sierra, P.K. Townsend, The geometry of N = 2 Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B242, 244–268 (1984). https://doi.org/10.1016/0550-3213(84)90142-1 ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    N. Seiberg, Five dimensional SUSY field theories, non-trivial fixed points and string dynamics. Phys. Lett. B388, 753–760 (1996). https://doi.org/10.1016/S0370-2693(96)01215-4, arXiv:hep-th/9608111 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    B. Zumino, Normal forms of complex matrices. J. Math. Phys. 3, 1055–1057 (1962)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edoardo Lauria
    • 1
  • Antoine Van Proeyen
    • 2
  1. 1.CPHTEcole PolytechniquePalaiseauFrance
  2. 2.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium

Personalised recommendations