Advertisement

Basic Ingredients

  • Edoardo Lauria
  • Antoine Van Proeyen
Chapter
  • 61 Downloads
Part of the Lecture Notes in Physics book series (LNP, volume 966)

Abstract

We give an introduction to the book, discussing the role of the \(\mathcal {N}=2\) theories, its geometric structure, and the superconformal tensor calculus. We also refer to other treatments. We then set out the plan of the book.

In the second part of the chapter we introduce tools that are useful for the construction of superconformal gauge theory and multiplets. We first discuss the catalogue of supersymmetric theories with 8 supercharges (Sect. 1.2) and their multiplets (Sect. 1.2.1). After a short Sect. 1.2.2 with the strategy, we discuss the conformal (Sect. 1.2.3) and then superconformal (Sect. 1.2.4) groups. The transformations of the fields under the conformal symmetry are also given in Sect. 1.2.3, while for the fermionic symmetries, this is discussed in a short Sect. 1.2.5.

References

  1. 1.
    B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged N = 2 supergravity—Yang–Mills models. Nucl. Phys. B245, 89–117 (1984). https://doi.org/10.1016/0550-3213(84)90425-5 ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory. Nucl. Phys. B426, 19–52 (1994). https://doi.org/10.1016/0550-3213(94)90124-4,10.1016/0550-3213(94)00449-8, arXiv:hep-th/9407087 [hep-th]. [Erratum: Nucl. Phys.B430,485(1994)]
  3. 3.
    N. Seiberg, E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD. Nucl. Phys. B431, 484–550 (1994). https://doi.org/10.1016/0550-3213(94)90214-3, arXiv:hep-th/9408099 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
  5. 5.
    V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. I: vector multiplets. J. High Energy Phys. 03, 028 (2004). https://doi.org/10.1088/1126-6708/2004/03/028, arXiv:hep-th/0312001 [hep-th] MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Cortés, C. Mayer, T. Mohaupt, F. Saueressig, Special geometry of Euclidean supersymmetry. II: Hypermultiplets and the c-map. J. High Energy Phys. 06, 025 (2005). https://doi.org/10.1088/1126-6708/2005/06/025, arXiv:hep-th/0503094 [hep-th] CrossRefGoogle Scholar
  7. 7.
    V. Cortés, T. Mohaupt, Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes. J. High Energy Phys. 07, 066 (2009). https://doi.org/10.1088/1126-6708/2009/07/066, arXiv:0905.2844 [hep-th] MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Cortés, P. Dempster, T. Mohaupt, O. Vaughan, Special geometry of Euclidean supersymmetry IV: the local c-map. J. High Energy Phys. 10, 066 (2015).  https://doi.org/10.1007/JHEP10(2015)066, arXiv:1507.04620 [hep-th]
  9. 9.
    M.A. Lledó, Ó. Maciá, A. Van Proeyen, V.S. Varadarajan, Special geometry for arbitrary signatures, in Handbook on Pseudo-Riemannian Geometry and Supersymmetry, ed. by V. Cortés. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16, chap. 5 (European Mathematical Society, Zürich, 2010). hep-th/0612210
  10. 10.
    W.A. Sabra, Special geometry and space-time signature. Phys. Lett. B773, 191–195 (2017). https://doi.org/10.1016/j.physletb.2017.08.021, arXiv:1706.05162 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    L. Gall, T. Mohaupt, Five-dimensional vector multiplets in arbitrary signature. J. High Energy Phys. 09, 053 (2018).  https://doi.org/10.1007/JHEP09(2018)053, arXiv:1805.06312 [hep-th]
  12. 12.
    V. Cortés, L. Gall, T. Mohaupt, Four-dimensional vector multiplets in arbitrary signature. arXiv:1907.12067 [hep-th]
  13. 13.
    B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su, A. Van Proeyen, Gauge and matter fields coupled to N = 2 supergravity. Phys. Lett. B134, 37–43 (1984). https://doi.org/10.1016/0370-2693(84)90979-1 ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Alvarez-Gaumé, D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model. Commun. Math. Phys. 80, 443 (1981). https://doi.org/10.1007/BF01208280 ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Bagger, E. Witten, Matter couplings in N = 2 supergravity. Nucl. Phys. B222, 1–10 (1983). https://doi.org/10.1016/0550-3213(83)90605-3 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E. Bergshoeff, S. Vandoren, A. Van Proeyen, The identification of conformal hypercomplex and quaternionic manifolds. Int. J. Geom. Meth. Mod. Phys. 3, 913–932 (2006). https://doi.org/10.1142/S0219887806001521, arXiv:math/0512084 [math.DG] MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    G. Sierra, P.K. Townsend, An introduction to N = 2 rigid supersymmetry, in Supersymmetry and supergravity 1983, ed. by B. Milewski (World Scientific, Singapore, 1983)Google Scholar
  18. 18.
    E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet–supergravity couplings. Class. Quant. Grav. 2, 445 (1985). https://doi.org/10.1088/0264-9381/2/4/010 ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990). https://doi.org/10.1007/BF02096559 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    L. Castellani, R. D’Auria, S. Ferrara, Special geometry without special coordinates. Class. Quant. Grav. 7, 1767–1790 (1990). https://doi.org/10.1088/0264-9381/7/10/009 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Ferrara, M. Kaku, P.K. Townsend, P. van Nieuwenhuizen, Unified field theories with U(N) internal symmetries: gauging the superconformal group. Nucl. Phys. B129, 125–134 (1977). https://doi.org/10.1016/0550-3213(77)90023-2 ADSCrossRefGoogle Scholar
  22. 22.
    M. Kaku, P.K. Townsend, P. van Nieuwenhuizen, Properties of conformal supergravity. Phys. Rev. D17, 3179–3187 (1978).  https://doi.org/10.1103/PhysRevD.17.3179 ADSMathSciNetGoogle Scholar
  23. 23.
    M. Kaku, P.K. Townsend, Poincaré supergravity as broken superconformal gravity. Phys. Lett. 76B, 54–58 (1978). https://doi.org/10.1016/0370-2693(78)90098-9 ADSCrossRefGoogle Scholar
  24. 24.
    V. Pestun, M. Zabzine, Localization techniques in quantum field theories. J. Phys. A50(44), 440301 (2017). https://doi.org/10.1088/1751-8121/aa63c1, arXiv:1608.02952 [hep-th] MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    P.S. Howe, Supergravity in superspace. Nucl. Phys. B199, 309–364 (1982). https://doi.org/10.1016/0550-3213(82)90349-2 ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    S.M. Kuzenko, U. Lindström, M. Roček, G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace. J. High Energy Phys. 08, 023 (2009) . https://doi.org/10.1088/1126-6708/2009/08/023, arXiv:0905.0063 [hep-th] MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    S.M. Kuzenko, G. Tartaglino-Mazzucchelli, Super-Weyl invariance in 5D supergravity. J. High Energy Phys. 04, 032 (2008). https://doi.org/10.1088/1126-6708/2008/04/032, arXiv:0802.3953 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    W.D. Linch, III, G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields. J. High Energy Phys. 08, 075 (2012).  https://doi.org/10.1007/JHEP08(2012)075, arXiv:1204.4195 [hep-th]
  29. 29.
    D. Butter, \(\mathcal {N}=1\) conformal superspace in four dimensions. Ann. Phys. 325, 1026–1080 (2010). https://doi.org/10.1016/j.aop.2009.09.010, arXiv:0906.4399 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    D. Butter, \(\mathcal {N}=2\) conformal superspace in four dimensions. J. High Energy Phys. 10, 030 (2011).  https://doi.org/10.1007/JHEP10(2011)030, arXiv:1103.5914 [hep-th]
  31. 31.
    D. Butter, J. Novak, Component reduction in \(\mathcal {N}=2\) supergravity: the vector, tensor, and vector-tensor multiplets. J. High Energy Phys. 05, 115 (2012).  https://doi.org/10.1007/JHEP05(2012)115, arXiv:1201.5431 [hep-th]
  32. 32.
    D. Butter, S.M. Kuzenko, J. Novak, G. Tartaglino-Mazzucchelli, Conformal supergravity in five dimensions: new approach and applications. J. High Energy Phys. 02, 111 (2015).  https://doi.org/10.1007/JHEP02(2015)111, arXiv:1410.8682 [hep-th]
  33. 33.
    D. Butter, S.M. Kuzenko, J. Novak, S. Theisen, Invariants for minimal conformal supergravity in six dimensions. J. High Energy Phys. 12, 072 (2016).  https://doi.org/10.1007/JHEP12(2016)072, arXiv:1606.02921 [hep-th]
  34. 34.
    D. Butter, J. Novak, G. Tartaglino-Mazzucchelli, The component structure of conformal supergravity invariants in six dimensions. J. High Energy Phys. 05, 133 (2017).  https://doi.org/10.1007/JHEP05(2017)133, arXiv:1701.08163 [hep-th]
  35. 35.
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 matter, Yang–Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469–498 (1984). https://doi.org/10.1088/0264-9381/1/5/004. [Erratum: Class. Quant. Grav.2,127(1985)]ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic superspace, in Cambridge Monographs on Mathematical Physics (Cambridge University, Cambridge, 2007).  https://doi.org/10.1017/CBO9780511535109, http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/harmonic-superspace?format=PB
  37. 37.
    A. Karlhede, U. Lindström, M. Rocek, Selfinteracting tensor multiplets in N = 2 superspace. Phys. Lett. 147B, 297–300 (1984). https://doi.org/10.1016/0370-2693(84)90120-5 ADSCrossRefGoogle Scholar
  38. 38.
    U. Lindström, M. Roček, New hyperkähler metrics and new supermultiplets. Commun. Math. Phys. 115, 21 (1988). https://doi.org/10.1007/BF01238851 ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    U. Lindström, M. Roček, N = 2 super Yang–Mills theory in projective superspace. Commun. Math. Phys. 128, 191 (1990). https://doi.org/10.1007/BF02097052 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    U. Lindström, M. Roček, Properties of hyperkähler manifolds and their twistor spaces. Commun. Math. Phys. 293, 257–278 (2010). https://doi.org/10.1007/s00220-009-0923-0, arXiv:0807.1366 [hep-th] ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    S.M. Kuzenko, Lectures on nonlinear sigma-models in projective superspace. J. Phys. A43, 443001 (2010). https://doi.org/10.1088/1751-8113/43/44/443001, arXiv:1004.0880 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    A.S. Galperin, N.A. Ky, E. Sokatchev, N = 2 supergravity in superspace: solution to the constraints. Class. Quant. Grav. 4, 1235 (1987). https://doi.org/10.1088/0264-9381/4/5/022 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E. Sokatchev, N = 2 supergravity in superspace: different versions and matter couplings. Class. Quant. Grav. 4, 1255 (1987). https://doi.org/10.1088/0264-9381/4/5/023 ADSMathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    S.M. Kuzenko, G. Tartaglino-Mazzucchelli, Five-dimensional superfield supergravity. Phys. Lett. B661, 42–51 (2008). https://doi.org/10.1016/j.physletb.2008.01.055, arXiv:0710.3440 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    S.M. Kuzenko, G. Tartaglino-Mazzucchelli, 5D Supergravity and projective superspace. J. High Energy Phys. 02, 004 (2008). https://doi.org/10.1088/1126-6708/2008/02/004, arXiv:0712.3102 [hep-th] MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    S.M. Kuzenko, U. Lindström, M. Rocek, G. Tartaglino-Mazzucchelli, 4D \(\mathcal {N} = 2\) supergravity and projective superspace. J. High Energy Phys. 09, 051 (2008). https://doi.org/10.1088/1126-6708/2008/09/051, arXiv:0805.4683 [hep-th] MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    D. Butter, New approach to curved projective superspace. Phys. Rev. D92(8), 085004 (2015).  https://doi.org/10.1103/PhysRevD.92.085004, arXiv:1406.6235 [hep-th]
  48. 48.
    D. Butter, Projective multiplets and hyperkähler cones in conformal supergravity. J. High Energy Phys. 06, 161 (2015).  https://doi.org/10.1007/JHEP06(2015)161, arXiv:1410.3604 [hep-th]
  49. 49.
    D. Butter, On conformal supergravity and harmonic superspace. J. High Energy Phys. 03, 107 (2016).  https://doi.org/10.1007/JHEP03(2016)107, arXiv:1508.07718 [hep-th]
  50. 50.
    P. Fré, P. Soriani, TheN = 2 Wonderland: From Calabi–Yau Manifolds to Topological Field Theories (World Scientific, Singapore, 1995)zbMATHCrossRefGoogle Scholar
  51. 51.
    L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Frè T. Magri, N = 2 supergravity and N = 2 super Yang–Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map. J. Geom. Phys. 23, 111–189 (1997). https://doi.org/10.1016/S0393-0440(97)00002-8, arXiv:hep-th/9605032 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    A. Ceresole, G. Dall’Agata, General matter coupled \(\mathcal {N} = 2\), D = 5 gauged supergravity. Nucl. Phys. B585, 143–170 (2000). https://doi.org/10.1016/S0550-3213(00)00339-4, arXiv:hep-th/0004111 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    N. Cribiori, G. Dall’Agata, On the off-shell formulation of N = 2 supergravity with tensor multiplets. J. High Energy Phys. 08, 132 (2018).  https://doi.org/10.1007/JHEP08(2018)132, arXiv:1803.08059 [hep-th]
  54. 54.
    N. Boulanger, B. Julia, L. Traina, Uniqueness of \( \mathcal {N} \)= 2 and 3 pure supergravities in 4D. J. High Energy Phys. 04, 097 (2018).  https://doi.org/10.1007/JHEP04(2018)097, arXiv:1802.02966 [hep-th]
  55. 55.
    I.A. Batalin, G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators, Phys. Rev. D28, 2567–2582 (1983).  https://doi.org/10.1103/PhysRevD.28.2567,10.1103/PhysRevD.30.508. [Erratum: Phys. Rev.D30,508(1984)]
  56. 56.
    M. Henneaux, Lectures on the antifield—BRST formalism for gauge theories. Nucl. Phys. Proc. Suppl. 18A, 47–106 (1990). https://doi.org/10.1016/0920-5632(90)90647-D ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    G. Barnich, M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation. Phys. Lett. B311, 123–129 (1993). https://doi.org/10.1016/0370-2693(93)90544-R, arXiv:hep-th/9304057 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    J. Gomis, J. París, S. Samuel, Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1–145 (1995). https://doi.org/10.1016/0370-1573(94)00112-G, arXiv:hep-th/9412228 [hep-th] ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    E. Bergshoeff, S. Cucu, T. de Wit, J. Gheerardyn, S. Vandoren, A. Van Proeyen, N = 2 supergravity in five dimensions revisited. Class. Quant. Grav. 21, 3015–3041 (2004). https://doi.org/10.1088/0264-9381/23/23/C01,10.1088/0264-9381/21/12/013, arXiv:hep-th/0403045[hep-th], erratum 23 (2006) 7149
  60. 60.
    T. Kugo, K. Ohashi, Supergravity tensor calculus in 5D from 6D. Prog. Theor. Phys. 104, 835–865 (2000).  https://doi.org/10.1143/PTP.104.835, arXiv:hep-ph/0006231 [hep-ph] ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    T. Kugo, K. Ohashi, Off-shell d = 5 supergravity coupled to matter–Yang–Mills system. Prog. Theor. Phys. 105, 323–353 (2001).  https://doi.org/10.1143/PTP.105.323, arXiv:hep-ph/0010288 [hep-ph] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    M.F. Sohnius, Introducing supersymmetry. Phys. Rept. 128, 39–204 (1985). https://doi.org/10.1016/0370-1573(85)90023-7 ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    P. Binétruy, G. Dvali, R. Kallosh, A. Van Proeyen, Fayet–Iliopoulos terms in supergravity and cosmology. Class. Quant. Grav. 21, 3137–3170 (2004). https://doi.org/10.1088/0264-9381/21/13/005, arXiv:hep-th/0402046 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    J. Strathdee, Extended Poincaré supersymmetry. Int. J. Mod. Phys. A2, 273 (1987). https://doi.org/10.1142/S0217751X87000120, [104(1986)]ADSzbMATHCrossRefGoogle Scholar
  65. 65.
    M. Sohnius, K.S. Stelle, P.C. West, Off mass shell formulation of extended supersymmetric gauge theories. Phys. Lett. 92B, 123–127 (1980). https://doi.org/10.1016/0370-2693(80)90319-6 ADSMathSciNetCrossRefGoogle Scholar
  66. 66.
    B. de Wit, V. Kaplunovsky, J. Louis, D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua. Nucl. Phys. B451, 53–95 (1995). https://doi.org/10.1016/0550-3213(95)00291-Y, arXiv:hep-th/9504006 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    P. Claus, B. de Wit, B. Kleijn, R. Siebelink, P. Termonia, N = 2 supergravity Lagrangians with vector–tensor multiplets. Nucl. Phys. B512, 148–178 (1998). https://doi.org/10.1016/S0550-3213(97)00781-5, arXiv:hep-th/9710212 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    M. Günaydin, M. Zagermann, The gauging of five-dimensional, N = 2 Maxwell–Einstein supergravity theories coupled to tensor multiplets. Nucl. Phys. B572, 131–150 (2000). https://doi.org/10.1016/S0550-3213(99)00801-9, arXiv:hep-th/9912027 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    M. Günaydin, M. Zagermann, The vacua of 5d, N = 2 gauged Yang–Mills/Einstein/tensor supergravity: Abelian case. Phys. Rev. D62, 044028 (2000).  https://doi.org/10.1103/PhysRevD.62.044028, arXiv:hep-th/0002228 [hep-th]
  70. 70.
    M. Günaydin, M. Zagermann, Gauging the full R-symmetry group in five-dimensional, N = 2 Yang–Mills/Einstein/tensor supergravity. Phys. Rev. D63, 064023 (2001).  https://doi.org/10.1103/PhysRevD.63.064023, arXiv:hep-th/0004117 [hep-th]
  71. 71.
    S. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967).  https://doi.org/10.1103/PhysRev.159.1251 ADSzbMATHCrossRefGoogle Scholar
  72. 72.
    R. Haag, J.T. Łopuszański, M. Sohnius, All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B88, 257 (1975). https://doi.org/10.1016/0550-3213(75)90279-5, [257(1974)]ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    J. Maldacena, A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry. J. Phys. A46, 214011 (2013). https://doi.org/10.1088/1751-8113/46/21/214011, arXiv:1112.1016 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    V. Alba, K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions. J. High Energy Phys. 03, 044 (2016).  https://doi.org/10.1007/JHEP03(2016)044, arXiv:1510.02535 [hep-th]
  75. 75.
    E. Sezgin, Y. Tanii, Superconformal sigma models in higher than two dimensions. Nucl. Phys. B443, 70–84 (1995). https://doi.org/10.1016/0550-3213(95)00081-3, arXiv:hep-th/9412163 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    W. Nahm, Supersymmetries and their representations. Nucl. Phys. B135, 149 (1978). https://doi.org/10.1016/0550-3213(78)90218-3, [7(1977)]ADSCrossRefGoogle Scholar
  77. 77.
    J.W. van Holten, A. Van Proeyen, N = 1 supersymmetry algebras in d = 2,  3,  4 mod. 8. J. Phys. A15, 3763 (1982). https://doi.org/10.1088/0305-4470/15/12/028 ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    R. D’Auria, S. Ferrara, M.A. Lledó, V.S. Varadarajan, Spinor algebras. J. Geom. Phys. 40, 101–128 (2001). https://doi.org/10.1016/S0393-0440(01)00023-7, arXiv:hep-th/0010124 [hep-th] ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    M.A. Lledó, V.S. Varadarajan, Spinor algebras and extended superconformal algebras, in Proceedings of 2nd International Symposium on Quantum Theory and Symmetries (QTS-2): Cracow, Poland, July 18-21, 2001, pp. 463–472 (2002). https://doi.org/10.1142/9789812777850_0057, arXiv:hep-th/0111105 [hep-th].
  80. 80.
    C. Cordova, T.T. Dumitrescu, K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions. J. High Energy Phys. 03, 163 (2019).  https://doi.org/10.1007/JHEP03(2019)163, arXiv:1612.00809 [hep-th]
  81. 81.
    P. Claus, Conformal Supersymmetry in Supergravity and on Branes, Ph.D. thesis, Leuven, 2000Google Scholar
  82. 82.
    E. Bergshoeff, S. Cucu, M. Derix, T. de Wit, R. Halbersma, A. Van Proeyen, Weyl multiplets of N = 2 conformal supergravity in five dimensions. J. High Energy Phys. 06, 051 (2001). https://doi.org/10.1088/1126-6708/2001/06/051, arXiv:hep-th/0104113 [hep-th] MathSciNetCrossRefGoogle Scholar
  83. 83.
    E. Bergshoeff, E. Sezgin, A. Van Proeyen, Superconformal tensor calculus and matter couplings in six dimensions. Nucl. Phys. B264, 653 (1986). https://doi.org/10.1016/0550-3213(86)90503-1, [Erratum: Nucl. Phys.B598,667(2001)]ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Edoardo Lauria
    • 1
  • Antoine Van Proeyen
    • 2
  1. 1.CPHTEcole PolytechniquePalaiseauFrance
  2. 2.Institute for Theoretical PhysicsKU LeuvenLeuvenBelgium

Personalised recommendations