Toxic Effects of Metal Nanoparticles in Marine Invertebrates

  • Joana C. Almeida
  • Celso E. D. CardosoEmail author
  • Eduarda Pereira
  • Rosa Freitas
Part of the Engineering Materials book series (ENG.MAT.)


The extensive use of nanomaterials, namely metal and metal oxide nanoparticles (NPs), in a variety of application areas—such as electronics, medicine, energy, environment, industry, information, security, among others—leads to the end-up of these materials into the aquatic environments. Once there, NPs accumulate in organisms and may amplify along the food chain, inducing effects on these organisms and humans. Due to the relevance of this issue, works concerning NPs potential effects to the aquatic organisms have been published in the literature. This chapter starts to explore the main applications and the synthesis methods of NPs, as well as their impact in the environment. Then, common parameters used to evaluate ecotoxicological impacts are described. Lastly, research undertaken on the biological toxic impacts of titanium dioxide, zinc oxide and silver NPs in marine invertebrates is reviewed, based on the most recent literature. The selection of these NPs was based on the evaluation of nanomaterials most used in consumer products.


Toxic effects Invertebrates Metal nanoparticles Organisms Toxicity 



This work was supported by the National Funding for Science and Technology (FCT) through doctoral grant to Joana C. Almeida [SFRH/BD/139471/2018], and the University of Aveiro, FCT/MEC for the financial support to CESAM and CICECO [UID/AMB/50017/2013; UID/CTM/50011/2013], through national funds and, where applicable, co-financed by the FEDER, within the PT2020 Partnership Agreement. This work was also carried out under the Project inpactus—innovative products and technologies from eucalyptus, Project N.º 21874 funded by Portugal 2020 through European Regional Development Fund (ERDF) in the frame of COMPETE 2020 nº246/AXIS II/2017. This work was also financially supported by the project BISPECIAl: BIvalveS under Polluted Environment and ClImate chAnge PTDC/CTA-AMB/28425/2017 (POCI-01-0145-FEDER-028425) funded by FEDER, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES.


  1. 1.
    Mobasser, S., Firoozi, A.: Review of nanotechnology applications in science and engineering. J. Civ. Eng. Urban. 6, 84–93 (2016)Google Scholar
  2. 2.
    Blackman, J.: Metallic Nanoparticles. Elsevier Science (2008)Google Scholar
  3. 3.
    Canesi, L., Corsi, I.: Effects of nanomaterials on marine invertebrates. Sci. Total Environ. 565, 933–940 (2015)CrossRefGoogle Scholar
  4. 4.
    Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O.: Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19 (2012)CrossRefGoogle Scholar
  5. 5.
    Francisquini, E., Schoenmaker, J., Souza, J.A.: Nanopartículas Magnéticas e suas Aplicações. In: Química Supramol. e Nanotecnologia, 1st edn, pp. 269–288 (2014)Google Scholar
  6. 6.
    Martins, M.A., Trindade, T.: Os nanomateriais e a descoberta de novos mundos na bancada do químico. Quim. Nova 35, 1434–1446 (2012)CrossRefGoogle Scholar
  7. 7.
    ISO, International Organization for Standardization (2012). Accessed 16 Jun 2016
  8. 8.
    Quina, F.H.: Nanotecnologia e o Meio Ambiente: Perspectivas e Riscos. Quim. Nova 27, 1028–1029 (2004)CrossRefGoogle Scholar
  9. 9.
    Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Rejeski, D., Hull, M.S.: Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015)CrossRefGoogle Scholar
  10. 10.
    Lu, P.J., Huang, S.C., Chen, Y.P., Chiueh, L.C., Shih, D.Y.C.: Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 23, 587–594 (2015)CrossRefGoogle Scholar
  11. 11.
    Katz, L.M., Dewan, K., Bronaugh, R.L.: Nanotechnology in cosmetics. Food Chem. Toxicol. 85, 127–137 (2015)CrossRefGoogle Scholar
  12. 12.
    Anu Mary Ealia, S., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 263, 1–15 (2017). Scholar
  13. 13.
    Corma, A., Garcia, H.: Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008)CrossRefGoogle Scholar
  14. 14.
    Mishra, P., Singh, L., Islam, M.A., Nasrullah, M., Sakinah, A.M.M., Wahid, Z.A.: NiO and CoO nanoparticles mediated biological hydrogen production: effect of Ni/Co oxide NPs-ratio. Bioresour. Technol. Rep. 5, 364–368 (2018)CrossRefGoogle Scholar
  15. 15.
    Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 1–33 (2018)CrossRefGoogle Scholar
  16. 16.
    Tan, H.-L., Teow, S.-Y., Pushpamalar, J.: Application of metal nanoparticle-hydrogel composites in tissue regeneration. Bioengineering 6, 17 (2019)CrossRefGoogle Scholar
  17. 17.
    Bouwmeester, H., Dekkers, S., Noordam, M.Y., Hagens, W.I., Bulder, A.S., de Heer, C., ten Voorde, S.E.C.G., Wijnhoven, S.W.P., Marvin, H.J.P., Sips, A.J.A.M.: Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53, 52–62 (2009)CrossRefGoogle Scholar
  18. 18.
    Hlongwane, G.N., Sekoai, P.T., Meyyappan, M., Moothi, K.: Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci. Total Environ. 656, 808–833 (2019)CrossRefGoogle Scholar
  19. 19.
    Li, Q., Chen, X., Zhuang, J., Chen, X.: Decontaminating soil organic pollutants with manufactured nanoparticles. Environ. Sci. Pollut. Res. 23, 11533–11548 (2016)CrossRefGoogle Scholar
  20. 20.
    Sinha, A.K., Suzuki, K., Takahara, M., Azuma, H., Nonaka, T., Fukumoto, K.: Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew. Chem. Int. Ed. 119, 2949–2952 (2007)CrossRefGoogle Scholar
  21. 21.
    Harish, K.K., Nagasamy, V., Himangshu, B., Anuttam, K.: Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4, 3765–3775 (2018)Google Scholar
  22. 22.
    Natsuki, J., Natsuki, T., Hashimoto, Y.: A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325–332 (2016)Google Scholar
  23. 23.
    Smita, S., Gupta, S.K., Bartonova, A., Dusinska, M., Gutleb, A.C., Rahman, Q.: Nanoparticles in the environment: assessment using the causal diagram approach. Environ. Heal. 11, 11 (2012)CrossRefGoogle Scholar
  24. 24.
    Khan, H.A., Shanker, R.: Toxicity of nanomaterials. Biomed. Res. Int. 2015, 2 (2015)Google Scholar
  25. 25.
    Bundschuh, M., Filser, J., Lüderwald, S., McKee, M.S., Metreveli, G., Schaumann, G.E., Schulz, R., Wagner, S.: Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6–22 (2018)CrossRefGoogle Scholar
  26. 26.
    Sun, T.Y., Bornhöft, N.A., Hungerbühler, K., Nowack, B.: Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016)CrossRefGoogle Scholar
  27. 27.
    Keller, A.A., McFerran, S., Lazareva, A., Suh, S.: Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 15, 1692–1708 (2013)CrossRefGoogle Scholar
  28. 28.
    Châtel, A., Mouneyrac, C.: Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp. Biochem. Physiol. Part C. 196, 61–70 (2017)Google Scholar
  29. 29.
    AshaRani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S.: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279–290 (2009)CrossRefGoogle Scholar
  30. 30.
    Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. Springer, Berlin, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
    Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Di Cosmo, A., Soares, A.M.V.M., Polese, G., Pereira, E., Freitas, R.: Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: biochemical and histopathological impacts. Aquat. Toxicol. 211, 181–192 (2019)CrossRefGoogle Scholar
  32. 32.
    Coppola, F., Almeida, Â., Henriques, B., Soares, A.M.V.M., Figueira, E., Pereira, E., Freitas, R.: Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. Sci. Total Environ. 601–602, 1129–1138 (2017)CrossRefGoogle Scholar
  33. 33.
    Monteiro, R., Costa, S., Coppola, F., Freitas, R., Vale, C., Pereira, E.: Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. Sci. Total Environ. 650, 987–995 (2019)CrossRefGoogle Scholar
  34. 34.
    Freitas, R., de Marchi, L., Moreira, A., Pestana, J.L.T., Wrona, F.J., Figueira, E., Soares, A.M.V.M.: Physiological and biochemical impacts induced by mercury pollution and seawater acidification in Hediste diversicolor. Sci. Total Environ. 595, 691–701 (2017)CrossRefGoogle Scholar
  35. 35.
    Matozzo, V., Ballarin, L., Pampanin, D.M., Marin, M.G.: Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Arch. Environ. Contam. Toxicol. 41, 163–170 (2001)CrossRefGoogle Scholar
  36. 36.
    Bouallegui, Y., Ben Younes, R., Oueslati, R., Sheehan, D.: Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: a redox proteomic investigation. Aquat. Toxicol. 200, 21–27 (2018)CrossRefGoogle Scholar
  37. 37.
    Li, J., Schiavo, S., Xiangli, D., Rametta, G., Miglietta, M.L., Oliviero, M., Changwen, W., Manzo, S.: Early ecotoxic effects of ZnO nanoparticle chronic exposure in Mytilus galloprovincialis revealed by transcription of apoptosis and antioxidant-related genes. Ecotoxicology 27, 369–384 (2018)CrossRefGoogle Scholar
  38. 38.
    De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Morelli, A., Soares, A.M.V.M., Freitas, R.: Toxic effects of multi-walled carbon nanotubes on bivalves: comparison between functionalized and nonfunctionalized nanoparticles. Sci. Total Environ. 622–623, 1532–1542 (2018)CrossRefGoogle Scholar
  39. 39.
    Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., Schettino, T.: Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed. Res. Int. 2013, 1–8 (2013)CrossRefGoogle Scholar
  40. 40.
    De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Soares, A.M.V.M., Freitas, R.: The impacts of emergent pollutants on Ruditapes philippinarum: biochemical responses to carbon nanoparticles exposure. Aquat. Toxicol. 187, 38–47 (2017)CrossRefGoogle Scholar
  41. 41.
    Nunes, B., Nunes, J., Soares, A.M.V.M., Figueira, E., Freitas, R.: Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. Aquat. Toxicol. 192, 198–206 (2017)CrossRefGoogle Scholar
  42. 42.
    Xia, B., Zhu, L., Han, Q., Sun, X., Chen, B., Qu, K.: Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: an integrated biomarker approach. Environ. Toxicol. Pharmacol. 50, 128–135 (2017)CrossRefGoogle Scholar
  43. 43.
    Bouallegui, Y., Ben Younes, R., Turki, F., Oueslati, R.: Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in Mytilus galloprovincialis. J. Immunotoxicol. 14, 116–124 (2017)CrossRefGoogle Scholar
  44. 44.
    Auguste, M., Ciacci, C., Balbi, T., Brunelli, A., Caratto, V., Marcomini, A., Cuppini, R., Canesi, L.: Effects of nanosilver on Mytilus galloprovincialis hemocytes and early embryo development. Aquat. Toxicol. 203, 107–116 (2018)CrossRefGoogle Scholar
  45. 45.
    Matozzo, V., Gagné, F., Immunotoxicology approaches in ecotoxicology: lessons from mollusks. In: Lessons Immunity. From Single-Cell Organisms to Mammals, pp. 29–51. Elsevier Inc. (2016)Google Scholar
  46. 46.
    Moreira, A., Figueira, E., Libralato, G., Soares, A.M.V.M., Guida, M., Freitas, R.: Comparative sensitivity of Crassostrea angulata and Crassostrea gigas embryo-larval development to As under varying salinity and temperature. Mar. Environ. Res. 140, 135–144 (2018)CrossRefGoogle Scholar
  47. 47.
    Mos, B., Kaposi, K.L., Rose, A.L., Kelaher, B., Dworjanyn, S.A.: Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva. Environ. Pollut. 228, 190–200 (2017)CrossRefGoogle Scholar
  48. 48.
    Oliviero, M., Schiavo, S., Dumontet, S., Manzo, S.: DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. Sci. Total Environ. 651, 756–765 (2019)CrossRefGoogle Scholar
  49. 49.
    Fabbri, R., Montagna, M., Balbi, T., Raffo, E., Palumbo, F., Canesi, L.: Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Mar. Environ. Res. 99, 1–8 (2014). Scholar
  50. 50.
    Carrazco-Quevedo, A., Römer, I., Salamanca, M.J., Poynter, A., Lynch, I., Valsami-Jones, E.: Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). Ecotoxicol. Environ. Saf. 179, 127–134 (2019)CrossRefGoogle Scholar
  51. 51.
    Minetto, D., Libralato, G., Marcomini, A., Volpi Ghirardini, A.: Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Sci. Total Environ. 579, 1379–1386 (2017)CrossRefGoogle Scholar
  52. 52.
    Duroudier, N., Katsumiti, A., Mikolaczyk, M., Schäfer, J., Bilbao, E., Cajaraville, M.P.: Dietary exposure of mussels to PVP/PEI coated Ag nanoparticles causes Ag accumulation in adults and abnormal embryo development in their offspring. Sci. Total Environ. 655, 48–60 (2019)CrossRefGoogle Scholar
  53. 53.
    Bhuvaneshwari, M., Thiagarajan, V., Nemade, P., Chandrasekaran, N., Mukherjee, A.: Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: effect of dietary and waterborne exposure. Environ. Res. 160, 39–46 (2018)CrossRefGoogle Scholar
  54. 54.
    Sellami, B., Mezni, A., Khazri, A., Bouzidi, I., Saidani, W., Sheehan, D., Beyrem, H.: Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. Aquat. Toxicol. 188, 10–19 (2017)CrossRefGoogle Scholar
  55. 55.
    Duroudier, N., Cardoso, C., Mehennaoui, K., Mikolaczyk, M., Schäfer, J., Gutleb, A.C., Giamberini, L., Bebianno, M.J., Bilbao, E., Cajaraville, M.P.: Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons. Aquat. Toxicol. 210, 56–68 (2019)CrossRefGoogle Scholar
  56. 56.
    Doyle, J.J., Ward, J.E., Wikfors, G.H.: Acute exposure to TiO2 nanoparticles produces minimal apparent effects on oyster, Crassostrea virginica (Gmelin), hemocytes. Mar. Pollut. Bull. 127, 512–523 (2018)CrossRefGoogle Scholar
  57. 57.
    Saidani, W., Sellami, B., Khazri, A., Mezni, A., Dellali, M., Joubert, O., Sheehan, D., Beyrem, H.: Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO2 NPs). Aquat. Toxicol. 208, 71–79 (2019)CrossRefGoogle Scholar
  58. 58.
    Auguste, M., Lasa, A., Pallavicini, A., Gualdi, S., Vezzulli, L., Canesi, L.: Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 670, 129–137 (2019)CrossRefGoogle Scholar
  59. 59.
    Shi, W., Guan, X., Han, Y., Zha, S., Fang, J., Xiao, G., Yan, M., Liu, G.: The synergic impacts of TiO2 nanoparticles and 17β-estradiol (E2) on the immune responses, E2 accumulation, and expression of immune-related genes of the blood clam, Tegillarca granosa. Fish Shellfish Immunol. 81, 29–36 (2018)CrossRefGoogle Scholar
  60. 60.
    Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., Su, W., Zha, S., Wang, Y., Liu, G.: Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa. Fish Shellfish Immunol. 66, 300–306 (2017)CrossRefGoogle Scholar
  61. 61.
    Guan, X., Shi, W., Zha, S., Rong, J., Su, W., Liu, G.: Neurotoxic impact of acute TiO2 nanoparticle exposure on a benthic marine bivalve mollusk, Tegillarca granosa. Aquat. Toxicol. 200, 241–246 (2018)CrossRefGoogle Scholar
  62. 62.
    Mezni, A., Alghool, S., Sellami, B., Ben Saber, N., Altalhi, T.: Titanium dioxide nanoparticles: synthesis, characterisations and aquatic ecotoxicity effects. Chem. Ecol. 34, 288–299 (2018)CrossRefGoogle Scholar
  63. 63.
    Shi, W., Han, Y., Guo, C., Su, W., Zhao, X., Zha, S., Wang, Y., Liu, G.: Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety. Sci. Rep. 9, 1–10 (2019)CrossRefGoogle Scholar
  64. 64.
    Huang, X., Liu, Y., Liu, Z., Zhao, Z., Dupont, S., Wu, F., Huang, W., Chen, J., Hu, M., Lu, W., Wang, Y.: Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus. Chemosphere 196, 182–195 (2018)CrossRefGoogle Scholar
  65. 65.
    Oliviero, M., Schiavo, S., Rametta, G., Miglietta, M.L., Manzo, S.: Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus. Sci. Total Environ. 607–608, 176–183 (2017)CrossRefGoogle Scholar
  66. 66.
    Wu, F., Cui, S., Sun, M., Xie, Z., Huang, W., Huang, X., Liu, L., Hu, M., Lu, W., Wang, Y.: Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus. Sci. Total Environ. 624, 820–830 (2018)CrossRefGoogle Scholar
  67. 67.
    Falfushynska, H.I., Gnatyshyna, L.L., Ivanina, A.V., Sokolova, I.M., Stoliar, O.B.: Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere 193, 1127–1142 (2018)CrossRefGoogle Scholar
  68. 68.
    Schiavo, S., Oliviero, M., Li, J., Manzo, S.: Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms. Environ. Sci. Pollut. Res. 25, 4871–4880 (2018)CrossRefGoogle Scholar
  69. 69.
    Manzo, S., Schiavo, S., Oliviero, M., Toscano, A., Ciaravolo, M., Cirino, P.: Immune and reproductive system impairment in adult sea urchin exposed to nanosized ZnO via food. Sci. Total Environ. 599–600, 9–13 (2017)CrossRefGoogle Scholar
  70. 70.
    Ale, A., Liberatori, G., Vannuccini, M.L., Bergami, E., Ancora, S., Mariotti, G., Bianchi, N., Galdopórpora, J.M., Desimone, M.F., Cazenave, J., Corsi, I.: Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat. Toxicol. 211, 46–56 (2019)CrossRefGoogle Scholar
  71. 71.
    Magesky, A., Ribeiro, C.A. de O.M, Beaulieu, L., Pelletier, É.: Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environ. Toxicol. Chem. 36, 1872–1886 (2017)CrossRefGoogle Scholar
  72. 72.
    Vannuci-Silva, M., Cadore, S., Henry, T.B., Umbuzeiro, G.: Higher silver bioavailability after nanoparticle dietary exposure in marine amphipods. Environ. Toxicol. Chem. 38, 806–810 (2019)CrossRefGoogle Scholar
  73. 73.
    Tang, C.H., Lin, C.Y., Lee, S.H., Wang, W.H.: Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquat. Toxicol. 187, 72–81 (2017)CrossRefGoogle Scholar
  74. 74.
    Bouallegui, Y., Ben Younes, R., Bellamine, H., Oueslati, R.: Histopathological indices and inflammatory response in the digestive gland of the mussel Mytilus galloprovincialis as biomarker of immunotoxicity to silver nanoparticles. Biomarkers 23, 277–287 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joana C. Almeida
    • 1
    • 2
  • Celso E. D. Cardoso
    • 1
    • 2
    Email author
  • Eduarda Pereira
    • 2
  • Rosa Freitas
    • 3
  1. 1.Chemistry DepartmentCICECO-Aveiro Institute of Materials, University of AveiroAveiroPortugal
  2. 2.Chemistry Department, CESAM & LAQV-REQUIMTEUniversity of AveiroAveiroPortugal
  3. 3.Biology Department, CESAMUniversity of AveiroAveiroPortugal

Personalised recommendations