Treating of Aquatic Pollution by Carbon Quantum Dots

  • Z. M. Marković
  • B. M. Todorović MarkovićEmail author
Part of the Engineering Materials book series (ENG.MAT.)


In this chapter, structural, optical, antibacterial and photocatalytic properties of carbon quantum dots are described. Carbon quantum dots are a new class of carbon based nanomaterials with extraordinary properties and because of that they can be used in different fields. The special attention is devoted to methods for eliminating various pathogens, organic dyes, chemicals and pesticides from water by using carbon quantum dots. Water pollution is one of the greatest problems worldwide and successful water cleaning from various pollutants has the highest priority.


Carbon quantum dots Reactive oxygen species Antibacterial activity Photocatalytic activity 



Authors thank for support to the Ministry of Education, Science and Technological Development of the Republic of Serbia via project no. 172003.


  1. 1.
    Lumb, G., Clare, A.S.: The problems of water pollution: an overview. Pa Med 95, 28–32 (1992)Google Scholar
  2. 2.
    Inyinbor Adejumoke, A., Adebesin Babatunde, O., Oluyori Abimbola, P., Adelani Akande Tabitha, A., Dada Adewumi, O., Oreofe Toyin, A.: A water pollution: effects, prevention, and climatic impact. In: Glavan, M. (ed.) Water Challenges of an Urbanizing World, pp. 34–35. Intechopen (2018)Google Scholar
  3. 3.
    Owa, F.W.: Water pollution: sources, effects, control and management. Int. Lett. Nat. Sci. 3, 1–6 (2014)Google Scholar
  4. 4.
    Konstantinova, E., Shalaumova, Y., Maslakova, T., Varaksin, A., Zhivoderov, A.: Effects of environmental radioactive pollution on the cardiovascular systems of Ural region residents: a comparative study. Int. J. Med. Res. Health Sci. 7, 1–7 (2018)CrossRefGoogle Scholar
  5. 5.
    Jarup, L.: Hazards of heavy metal contamination. Brit. Med. Bull. 68, 167–182 (2003)CrossRefGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention: Estimates of Healthcare-associated infections. Available at: Accessed 6 Aug 2019
  7. 7.
    Anaissie, E.J., Penzak, S.R., Dignani, C.: The hospital water supply as a source of nosocomial infections—a plea for action. Arch. Int. Med. 162, 1483Y1492 (2002)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Clevenger, T, Wu, Y, Degruson, E, Brazos, B, Banerji, S.: Comparison of the inactivation of Bacillus subtilis spores and MS2 bacteriophage by MIOX, ClorTec and hypochlorite. J. Appl. Microbiol. 103, 2285–2290 (2007)CrossRefGoogle Scholar
  10. 10.
    Loret, J.F., Robert, S., Thomas, V., Cooper, A.J., McCoy, W.F., Lévi, Y.: Comparison of disinfectants for biofilm, protozoa and Legionella control. J. Water Health 3, 423–433 (2005)CrossRefGoogle Scholar
  11. 11.
    Chen, C., Zhang, X.J., He, W.J., Han, H.D.: Simultaneous control of microorganisms and disinfection by-products by sequential chlorination. Biomed. Environ. Sci. 20, 119–125 (2007)Google Scholar
  12. 12.
    Cachafeiro, S.P., Naveira, I.M., Garcıa, I.G.: Is copper-silver ionisation safe and effective in controlling Legionella? J. Hosp. Infect. 67, 209–216 (2007)Google Scholar
  13. 13.
    Nessim, Y, Gehr, R.: Fouling mechanisms in a laboratory-scale UV disinfection system. Water Environ. Res. 78, 2311–2323 (2006)CrossRefGoogle Scholar
  14. 14.
    Cervia, J.S., Ortolano, G.A., Canonica, F.P.: Hospital tap water: a reservoir of risk for health care-associated infection. Infect. Dis. Clin. Practice 16, 349–353 (2008)CrossRefGoogle Scholar
  15. 15.
    Kaykhaii, M., Sasani, M., Marghzari, S.: Removal of dyes from the environment by adsorption process. Chem. Mater. Eng. 6, 31–35 (2018)Google Scholar
  16. 16.
    Shanker, U., Rani, M., Jassal, V.: Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 15, 623–642 (2017)CrossRefGoogle Scholar
  17. 17.
    Richardson, S.D., Thruston Jr., A.D., Caughran, T.V., Chen, P.H., Collette, T.W., Schenck, K.M., Lykins Jr., B.W., Rav-Acha, C., Glezer, V.: Identification of new drinking water disinfection by - products from ozone, chlorine dioxide, chloramine, and chlorine. Water Air Soil Poll. 123, 95–102 (2000)CrossRefGoogle Scholar
  18. 18.
    Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A.: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71, 1308–1316 (2008)CrossRefGoogle Scholar
  19. 19.
    Mabey, T., Cristaldi, D.A., Oyston, P., Lymer, K.P., Stulz, E., Wilks, S., Keevil, C.W., Zhang, X.L.: Bacteria and nanosilver: the quest for optimal production. Crit. Rev. Biotechnol. 39, 272–287 (2019)CrossRefGoogle Scholar
  20. 20.
    Benetti, G., Cavaliere, E., Brescia, R., Salassi, S., Ferrando, R., Vantomme, A., Pallecchi, L., Pollini, S., Boncompagni, S., Fortuni, B., Van Bael, M.J., Banfi, F., Gavioli, L.: Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating. Nanoscale 11, 1626–1635 (2019)CrossRefGoogle Scholar
  21. 21.
    Liu, Y.H., Kuo, S.C., Yao, B.Y., Fang, Z.S., Lee, Y.T., Chang, Y.C., Chen, T.L., Hu, C.M.L.: Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant gram-negative bacteria. Acta Biomater. 82, 133–142 (2018)CrossRefGoogle Scholar
  22. 22.
    Xi, Y.W., Ge, J., Guo, Y., Lei, B., Ma, P.X.: Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 12, 10772–10784 (2018)CrossRefGoogle Scholar
  23. 23.
    Shen, W., He, P., Xiao, C.S., Chen, X.S.: From antimicrobial peptides to antimicrobial poly(α-amino acid)s. Adv. Healthcare Mater. 7, 1800354 (2018)CrossRefGoogle Scholar
  24. 24.
    Wang, Q.W., Zhou, H.X., Liu, X.L., Li, T., Jiang, C.J., Song, W.H., Chen, W.: Facet-dependent generation of superoxide radical anions by ZnO nanomaterials under simulated solar light. Environ. Sci. Nano 5, 2864–2875 (2018)CrossRefGoogle Scholar
  25. 25.
    Premanathan, M., Karthikeyan, K., Jeyasubramanian, K., Manivannan, G.: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed. Nanotechnol. Biol. Med. 7, 184–192 (2011)CrossRefGoogle Scholar
  26. 26.
    Noimark, S., Weiner, J., Noor, N., Allan, E., Williams, C.K., Shaffer, M.S.P., Parkin, I.P.: Dual-mechanism antimicrobial polymer–ZnO nanoparticle and crystal violet-encapsulated silicone. Adv. Funct. Mater. 25, 1367–1373 (2015)CrossRefGoogle Scholar
  27. 27.
    Chen, J., Wang, F.Y.K., Liu, Q.M., Du, J.Z.: Antibacterial polymeric nanostructures for biomedical applications. Chem. Commun. 50, 14482–14493 (2014)CrossRefGoogle Scholar
  28. 28.
    Wang, C., Cui, Q.L., Wang, X.Y., Li, L.D.: Preparation of hybrid gold/polymer nanocomposites and their application in a controlled antibacterial assay. ACS Appl. Mater. Interfaces 8, 29101–29109 (2016)CrossRefGoogle Scholar
  29. 29.
    Da Silva, F.A.G., Queiroz, J.C., Macedo, E.R., Fernandes, A.W.C., Freire, N.B., Da Costa, M.M., De Oliveira, H.P.: Antibacterial behavior of polypyrrole: the influence of morphology and additives incorporation. Mater. Sci. Eng. C 62, 317–322 (2016)CrossRefGoogle Scholar
  30. 30.
    Lee, I., Roh, J., Lee, J., Song, J., Jang, J.: Antibacterial performance of various amine functional polymers coated silica nanoparticles. Polymer 83, 223–229 (2016)CrossRefGoogle Scholar
  31. 31.
    Wang, L., Yuan, Z., Karahan, H.E., Wang, Y., Sui, X., Liu, F., Chen, Y.: Nanocarbon materials in water disinfection: state-of-the-art and future directions. Nanoscale 11, 9819–9839 (2019)CrossRefGoogle Scholar
  32. 32.
    Perathoner, S., Ampelli, C., Chen, S., Passalacqua, R., Su, D., Centi, G.: Photoactive materials based on semiconducting nanocarbons—a challenge opening new possibilities for photocatalysis. J. Energy Chem. 26, 207–218 (2017)CrossRefGoogle Scholar
  33. 33.
    Gupta, V.K., Saleh, T.A.: Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. 20, 2828–2843 (2013)CrossRefGoogle Scholar
  34. 34.
    Wang, S., Zhu, Z.H.: Effects of acidic treatment of activated carbons on dye adsorption. Dyes Pigments 75, 306–314 (2007)CrossRefGoogle Scholar
  35. 35.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, New York (1996)Google Scholar
  36. 36.
    Yadav, B.C., Kumar, R.: Structure, properties and applications of fullerenes. Int. J. Nanotechnol. Appl. 2, 15–24 (2008)Google Scholar
  37. 37.
    Marković, Z., Trajković, V.: Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29, 3561–3573 (2008)CrossRefGoogle Scholar
  38. 38.
    Shan, S.J., Zhao, Y., Tang, H., Cui, F.Y.: A Mini-review of carbonaceous nanomaterials for removal of contaminants from wastewater. IOP Conf. Ser. Earth Environ. Sci. 68, 012003 (2017)CrossRefGoogle Scholar
  39. 39.
    Kholoud, A.A., Abou, M.M., Reda, E.N., Ammar, A.A., Warthan, A.A.: Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5, 1–23 (2012)CrossRefGoogle Scholar
  40. 40.
    Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  41. 41.
    Zhu, S., Wang, D.: Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv. Energy Mater. 1700841 (2017)CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014)CrossRefGoogle Scholar
  43. 43.
    Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)CrossRefGoogle Scholar
  44. 44.
    Travlou, N.A., Giannakoudakis, D.A., Algarra, M., Labella, M.A., Rodríguez-Castellón, E., Bandosz, T.J.: S- and N-doped carbon quantum dots: surface chemistry dependent antibacterial activity. Carbon 135, 104–111 (2018)CrossRefGoogle Scholar
  45. 45.
    Dong, Y., Wang, R., Li, H., Shao, J., Chi, Y., Lin, X., Chen, G.: Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50, 2810–2815 (2012)CrossRefGoogle Scholar
  46. 46.
    Liu, Y., Xiao, N., Gong, N., Wang, H., Shi, X., Gu, W., Ye, L.: One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 68, 258–264 (2014)CrossRefGoogle Scholar
  47. 47.
    Chae, A., Choi, Y., Jo, S., Nur’aeni, Paoprasert P., Park, S.Y., In, I.: Microwave-assisted synthesis of fluorescent carbon quantum dots from an A2/B3 monomer set. RSC Adv. 7, 12663–12669 (2017)CrossRefGoogle Scholar
  48. 48.
    Wang, J., Cheng, C., Huang, Y., Zheng, B., Yuan, H., Bo, L., Zheng, M.W., Yang, S.Y., Guo, Y., Xiao, D.: A facile large-scale microwave synthesis of highly fluorescent carbon dots from benzenediol isomers. J. Mater. Chem. C 2, 5028–5035 (2014)CrossRefGoogle Scholar
  49. 49.
    Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H., Yang, B.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 125, 3953–3957 (2013)CrossRefGoogle Scholar
  50. 50.
    Yang, Z.C., Wang, M., Yong, A.M., Wong, S.Y., Zhang, X.H., Tan, H., Chang, A.Y., Li, X., Wang, J.: Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47, 11615–11617 (2011)CrossRefGoogle Scholar
  51. 51.
    Yang, Y., Cui, J., Zheng, M., Hu, C., Tan, S., Xiao, Y., Yang, Q., Liu, Y.: One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 48, 380–382 (2012)CrossRefGoogle Scholar
  52. 52.
    De, B., Karak, N.: A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 3, 8286–8290 (2013)CrossRefGoogle Scholar
  53. 53.
    Alam, A.M., Park, B.Y., Ghouri, Z.K., Park, M., Kim, H.Y.: Synthesis of carbon quantum dot from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical application. Green Chem. 17, 3791–3797 (2015)CrossRefGoogle Scholar
  54. 54.
    Arumugam, N., Kim, J.: Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Mater. Lett. 219, 37–40 (2019)CrossRefGoogle Scholar
  55. 55.
    Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R.: Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3, 1473 (2013)CrossRefGoogle Scholar
  56. 56.
    Zhu, S., Song, Y., Zhao, X., Shao, J., Zhang, J., Yang, B.: The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015)CrossRefGoogle Scholar
  57. 57.
    Jovanović, S.P., Marković, Z.M., Syrgiannis, Z., Dramićanin, M.D., Arcudi, F., La Parola, V., Budimir, M., Todorović Marković, B.M.: Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. Mater. Res. Bull. 93, 183–193 (2017)CrossRefGoogle Scholar
  58. 58.
    Marković, Z.M., Jovanović, S.P., Mašković, P.Z., Danko, M., Mičušik, M., Pavlović, V.B., Milivojević, D.D., Kleinova, A., Špitalsky, Z., Todorović Marković, B.M.: Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. RSC Adv. 8, 31337 (2018)CrossRefGoogle Scholar
  59. 59.
    Yoon, H., Chang, Y.H., Song, S.H., Lee, E.S., Jin, S.H., Park, C., Lee, J., Kim, B.H., Kang, H.J., Kim, Y.H., Jeon, S.: Intrinsic photoluminescence emission from subdomained graphene quantum dots. Adv. Mater. 28, 5255–5261 (2016)CrossRefGoogle Scholar
  60. 60.
    Sun, Z., Li, X., Wu, Y., Wei, C., Zeng, H.: Green luminescence origin of carbon quantum dots: specific luminescence bands originate from oxidized carbon groups. New J. Chem. 42, 4603–4611 (2018)CrossRefGoogle Scholar
  61. 61.
    Meziani, M.J., Dong, X., Zhu, L., Jones, L.P., LeCroy, G.E., Yang, F., Wang, S., Wang, P., Zhao, Y., Yang, L., Tripp, R.A., Sun, Y.P.: Visible-light-activated bactericidal functions of carbon “quantum” dots. ACS Appl. Mater. Interfaces 8, 10761–10766 (2016)CrossRefGoogle Scholar
  62. 62.
    Park, S.O., Lee, C.Y., An, H.R., Kim, H., Chul Lee, Y., Changkyun Park, E., Chun, H.S., Yang, H.S., Choi, S.H., Kim, H.S., Kang, K.S., Park, H.G., Kim, J.P., Choi, Y., Lee, J., Lee, H.U.: Advanced carbon dots via plasma-induced surface functionalization for fluorescent and bio-medical applications. Nanoscale 9, 9210–9217 (2017)CrossRefGoogle Scholar
  63. 63.
    Dolmans, D.E., Fukumura, D., Jain, R.K.: Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 381–387 (2003)CrossRefGoogle Scholar
  64. 64.
    Marković, Z., Ristić, B., Arsikin, K., Klisić, D., Harhaji-Trajković, L., Todorović-Marković, B., Kepić, D., Kravić-Stevović, T., Jovanović, S., Milenković, M., Milivojević, D., Bumbaširević, V., Dramićanin, M., Trajković, V.: Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 33, 7084–7092 (2012)CrossRefGoogle Scholar
  65. 65.
    Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.S., Zhang, W., Han, X.A.: Graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5, 4596 (2014)CrossRefGoogle Scholar
  66. 66.
    Chong, Y., Ge, C., Fang, G., Tian, X., Ma, X., Wen, T., Wamer, W.G., Chen, C., Chai, Z., Yin, J.J.: Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 10, 8690–8699 (2016)CrossRefGoogle Scholar
  67. 67.
    Gour, N., Ngo, K.X., Vebert-Nardin, C.: Anti-infectious surfaces achieved by polymer modification. Macromol. Mater. Eng. 299, 648–668 (2014)CrossRefGoogle Scholar
  68. 68.
    Lin, L., Zhang, H., Cui, H., Xu, M., Cao, S., Zheng, G., Dong, M.: Preparation and antibacterial activities of hollow silica − Ag spheres. Colloids Surf. B 101, 97–100 (2013)CrossRefGoogle Scholar
  69. 69.
    Kováčová, M., Marković, Z.M., Humpolíček, P., Mičušík, M., Švajdlenková, H., Kleinová, A., Danko, M., Kubát, P., Vajďák, J., Capáková, Z., Lehocký, M., Münster, L., Todorović Marković, B., Špitalský, Z.: Carbon quantum dots modified polyurethane nanocomposites as effective photocatalytic and antibacterial agents. ACS Biomater. Sci. Eng. 4, 3983–3993 (2018)CrossRefGoogle Scholar
  70. 70.
    Sehmi, S.K., Noimark, S., Weiner, J., Allan, E., MacRobert, A.J., Parkin, I.P.: Potent antibacterial activity of copper embedded into silicone and polyurethane. ACS Appl. Mater. Interfaces. 7, 22807–22813 (2015)CrossRefGoogle Scholar
  71. 71.
    Bovis, M.J., Noimark, S., Woodhams, J.H., Kay, C.W.M., Weiner, J., Peveler, W.J., Correia, A., Wilson, M., Allan, E., Parkin, I.P., MacRobert, A.J.: Photosensitisation studies of silicone polymer doped with methylene blue and nanogold for antimicrobial applications. RSC Adv. 5, 54830–54842 (2015)CrossRefGoogle Scholar
  72. 72.
    Felgenträger, A., Maisch, T., Spath, A., Schroder, J.A., Baumler, W.: Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus. Phys. Chem. Chem. Phys. 16, 20598 (2014)CrossRefGoogle Scholar
  73. 73.
    Marković, Z.M., Kováčová, M., Humpolíček, P., Budimir, M.D., Vajďák, J., Kubát, P., Mičušík, M., Švajdlenková, H., Danko, M., Capáková, Z., Lehocký, M., Todorović Marković, B.M., Špitalský, Z.: Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagn Photodyn 26, 342–349 (2019)CrossRefGoogle Scholar
  74. 74.
    Hazarika, D., Karak, N.: Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach. Appl. Surf. Sci. 376, 276–285 (2016)CrossRefGoogle Scholar
  75. 75.
    Duarah, R., Singh, Y.P., Gupta, P., Mandal, B.M., Karak, N.: High performance biobased hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent. Biofabrication 8, 045013 (2016)CrossRefGoogle Scholar
  76. 76.
    Stanković, N.K., Bodik, M., Šiffalovič, P., Kotlar, M., Mičušik, M., Špitalsky, Z., Danko, M., Milivojević, D.D., Kleinova, A., Kubat, P., Capakova, Z., Humpoliček, P., Lehocky, M., Todorović Marković, B.M., Marković, Z.M.: Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir–Blodgett thin films. ACS Sustain. Chem. Eng. 6:4154−4163 (2018)Google Scholar
  77. 77.
    Dong, X., Al Awak, M., Tomlinson, N., Tang, Y., Sun, Y.P., Yang, L.: Antibacterial effects of carbon dots in combination with other antimicrobial reagents. PLoS ONE 12, e0185324 (2017)CrossRefGoogle Scholar
  78. 78.
    Al Awak, M.M., Wang, P., Wang, S., Tang, Y., Sun, Y.P., Yang, L.: Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Adv. 7, 30177–30184 (2017)CrossRefGoogle Scholar
  79. 79.
    Yang, J., Zhang, X., Ma, Y.H., Gao, G., Chen, X., Jia, H.R., Li, Y.H., Chen, Z., Wu, F.G.: Carbon dot-based platform for simultaneous bacterial distinguishment and antibacterial applications. ACS Appl. Mater. Inter. 84, 732170–732181 (2016)Google Scholar
  80. 80.
    Roy, A.K., Kim, S.M., Paoprasert, P., Park, S.Y., In, I.: Preparation of biocompatible and antibacterial carbon quantum dots derived from resorcinol and formaldehyde spheres. RSC Adv. 5, 31677–31682 (2015)CrossRefGoogle Scholar
  81. 81.
    Otis, G., Bhattacharya, S., Malka, O., Kolusheva, S., Bolel, P., Porgador, A., Jelinek, R.: Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots. ACS Infect. Dis. 8, 292–302 (2019)CrossRefGoogle Scholar
  82. 82.
    Strateva, T., Yordanov, D.: Pseudomonas aeruginosa-a phenomenon of bacterial resistance. J. Med. Microbiol. 58, 1133–1148 (2009)CrossRefGoogle Scholar
  83. 83.
    Kuang, W., Zhong, Q., Ye, X., Yan, Y., Yang, Y., Zhang, J., Huang, L., Tan, S., Shi, Q.: Antibacterial nanorods made of carbon quantum dots-ZnO under visible light irradiation. J. Nanosci. Nanotechnol. 19, 3982–3990 (2019)CrossRefGoogle Scholar
  84. 84.
    Thakur, M., Pandey, S., Mewada, A., Patil, V., Khade, M., Goshi, E., Sharon, M.: Antibiotic conjugated fluorescent carbon dots as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicrobial activity. J. Drug Deliv. 2014, 282193 (2014)CrossRefGoogle Scholar
  85. 85.
    Moradlou, O., Rabiei, Z., Delavari, N.: Antibacterial effects of carbon quantum dots@hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. J. Photoch. Photobio. A 379, 144–149 (2019)CrossRefGoogle Scholar
  86. 86.
    Reichel, V.: Functionalization of cellulose acetate surfaces for removal the of endocrine disruption compounds, Diploma thesis, Department of Colloid Science: University of Graz, Austria (2012)Google Scholar
  87. 87.
    Yao, B., Huang, H., Liu, Y., Kang, Z.: Carbon dots: a small conundrum. Trends Chem. 1, 235–246 (2019)CrossRefGoogle Scholar
  88. 88.
    Kim, S.Y., Park, J.W.: Cellular defense against singlet oxygeninduced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radical Res. 37, 309–316 (2003)CrossRefGoogle Scholar
  89. 89.
    Lushchak, V.: Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 153, 175–190 (2011)CrossRefGoogle Scholar
  90. 90.
    Katsikogianni, M., Missirlis, Y.F.: Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell Mater. 8, 37–57 (2004)CrossRefGoogle Scholar
  91. 91.
    Ammar, Y., Swailes, D.C., Bridgens, B.N., Chen, J.: Influence of surface roughness on the initial formation of biofilm. Surfl Coat Tech. 284, 410–416 (2015)CrossRefGoogle Scholar
  92. 92.
    Prekodravac, J., Vasiljević, B., Markovića, Z., Jovanović, D., Kleut, D., Špitalský Z, Mičušik, M, Danko, M, Bajuk–Bogdanović, D., Todorović–Marković, B.: Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. Ceramic Int. 45:17006–17013 (2019)CrossRefGoogle Scholar
  93. 93.
    Budimir, M., Marković, Z., Jovanović, D., Vujisić, M., Mičušik, M., Danko, M., Kleinova, A., Svajdlenkova, H., Spitalsky, Z., Todorović Marković, B.: Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. RSC Adv. 9, 6278–6286 (2019)CrossRefGoogle Scholar
  94. 94.
    Zhou, Y., Zahran, E.M., Quiroga, B.A., Perez, J., Mintz, K.J., Peng, Z., Liyanage, P.Y., Pandey, R.R., Chusuei, C.C., Leblanc, R.M.: Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl. Catal. B Environ 248, 157–166 (2019)CrossRefGoogle Scholar
  95. 95.
    Saud, P.S., Pant, B., Alam, A.M., Ghouri, Z.K., Park, M., Kim, H.Y.:Carbon quantum dots anchored TiO2 nanofibers: effective photocatalyst for waste water treatment. Ceramic Int. l41, 11953–11959 (2015)CrossRefGoogle Scholar
  96. 96.
    Zhang, J., Zhang, X., Dong, S., Zhou, X., Dong, S.: N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight. J. Photoch. Photobio. A 325, 104–110 (2016)CrossRefGoogle Scholar
  97. 97.
    Elkodous, M.A., Hassaan, A., Pal, K., Ghoneim, A.I., Abdeen, Z. (2018) C-dots dispersed macro-mesoporous TiO2 photocatalyst for effective waste water treatment. Charact. Appl. Nanomater 1Google Scholar
  98. 98.
    Martins, N.C.T., Ângelo, J., Girão, A.V., Trindade, T., Andrade, L., Mendes, A.: N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity. Appl. Catal. B Environ. 193, 67–74 (2016)CrossRefGoogle Scholar
  99. 99.
    Zhang, Y.Q., Ma, D.K., Zhang, Y.G., Chen, W., Huang, S.M.: N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2, 545–552 (2013)CrossRefGoogle Scholar
  100. 100.
    Miao, R., Luo, Z., Zhong, W., Chen, S.Y., Jiang, T., Dutta, B., Nasr, Y., Zhang, Y., Sui, S.L.: Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl. Catal. B Environ. 189, 26–38 (2016)CrossRefGoogle Scholar
  101. 101.
    Tian, J., Leng, Y., Zhao, Z., Xia, Y., Sang, Y., Hao, P., Zhan, J., Lid, M., Liu, H.: Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broadspectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy 11, 419–427 (2015)CrossRefGoogle Scholar
  102. 102.
    Muthulingama, S., Lee, I.H., Uthirakumar, P.: Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. J Colloid Interf. Sci. 455, 101–109 (2015)CrossRefGoogle Scholar
  103. 103.
    Bozetine, H., Wang, Q., Barras, A., Li, M., Hadjersi, T., Szunerits, S., Boukherroub, R.: Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. J. Colloid Interf. Sci. 465, 286–294 (2016)CrossRefGoogle Scholar
  104. 104.
    Zhang, X., Pan, J., Zhu, C., Sheng, Y., Yan, Z., Wang, Y., Feng, B.: The visible light catalytic properties of carbon quantum dots/ZnO nanoflowers composites. J. Mater. Sci. Mater. Electron. 26, 2861–2866 (2015)CrossRefGoogle Scholar
  105. 105.
    Ding, D., Lan, W., Yang, Z., Zhao, X., Chen, Y., Wang, J., Zhang, X., Zhang, Y., Su, Q., Xie, E.: A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications. Mat. Sci. Semicon. Proc. 47, 25–31 (2016)CrossRefGoogle Scholar
  106. 106.
    Li, Y., Zhang, B.P., Zhao, J.X., Ge, Z.H., Zhao, X.K., Zou, L.: ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Appl. Surf. Sci. 279, 367–373 (2013)CrossRefGoogle Scholar
  107. 107.
    Zhang, H., Huang, H., Ming, H., Li, H., Zhang, L., Liu, Y., Kang, Z.: Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem. 22, 10501–10506 (2012)CrossRefGoogle Scholar
  108. 108.
    Zhang, H., Ming, H., Lian, S., Huang, H., Li, H., Zhang, L., Liu, Y., Kang, Z., Le, S.T.: Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans. 40, 10822–10825 (2011)CrossRefGoogle Scholar
  109. 109.
    Tadesse, A., Devi, D.R., Hagos, M., Battub, G.R., Basavaiah, K.: Synthesis of nitrogen doped carbon quantum dots/magnetite nanocomposites for efficient removal of methyl blue dye pollutant from contaminated water. RSC Adv. 8, 8528–8536 (2018)CrossRefGoogle Scholar
  110. 110.
    Hazarika, D., Saikia, D., Gupta, K., Mandal, M., Karak, N.: Photoluminescence, self cleaning and photocatalytic behavior of waterborne hyperbranched polyester/carbon dot@TiO2 nanocomposite. Chem. Select 3, 6126–6135 (2018)Google Scholar
  111. 111.
    Zhang, Z., Zheng, T., Xua, J., Zeng, H., Zhang, N.: Carbon quantum dots/Bi2MoO6 composites with photocatalytic H2 evolution and near infrared activity. J. Photoch. Photobio. A 346, 24–31 (2017)CrossRefGoogle Scholar
  112. 112.
    Wang, J., Tang, L., Zeng, G., Deng, Y., Dong, H., Liu, Y., Wang, L., Peng, B., Zhang, C., Chen, F.: 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum lightutilization and mechanism insight. Appl. Catal. B Environ. 222, 115–123 (2018)CrossRefGoogle Scholar
  113. 113.
    Kannan, R., Kim, A.R., Eo, S.K., Kang, S.H., Yoo, D.J.: Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity. Ceramic Int. 43, 3072–3079 (2017)CrossRefGoogle Scholar
  114. 114.
    Liu, Y., Yu, Y.X., Zhang, W.D.: Carbon quantum dots-doped CdS microspheres with enhanced photocatalytic performance. J. Alloy Compd. 569, 102–110 (2013)CrossRefGoogle Scholar
  115. 115.
    Wang, X., Cao, L., Lu, F., Meziani, M.J., Li, H., Qi, G., Zhou, B., Harruff, B.A., Kermarrec, F., Sun, Y.P.: Photoinduced electron transfers with carbon dots. Chem. Commun. 3774–3776 (2009)Google Scholar
  116. 116.
    Koilraj, P., Kamura, Y., Sasaki, K.: Carbon-dot-decorated layered double hydroxide nanocomposites as a multifunctional environmental material for Co-immobilization of SeO42– and Sr2+ from aqueous solutions. ACS Sustainable Chem Eng 5, 9053–9064 (2017)CrossRefGoogle Scholar
  117. 117.
    Yang, P., Zhao, J., Zhang, L., Li, L., Zhu, Z.: Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots. Chemistry 21, 8561–8568 (2015)CrossRefGoogle Scholar
  118. 118.
    Wu, X., Song, Y., Yan, X., Zhu, C., Ma, Y., Du, D., Lin, Y.: Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron. 94, 292–297 (2017)CrossRefGoogle Scholar
  119. 119.
    Fung, M.C.M.: The development of carbon nanodots as fluorescent receptor for the detection of organophosphate pesticides. MS thesis, Faculty of Engineering, Computing and Science Swinburne University of Technology Sarawak Campus, Malaysia (2016)Google Scholar
  120. 120.
    Panda, S., Jadav, A., Panda, N., Mohapatra, S.: A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. New J. Chem. 42, 2074–2080 (2018)CrossRefGoogle Scholar
  121. 121.
    Lin, B., Yan, Y., Guo, M., Cao, Y., Yu, Y., Zhang, T., Huang, Y., Wu, D.: Modification-free carbon dots as turn-on fluorescence probe for detection of organophosphorus pesticides. Food Chem. 245, 1176–1182 (2018)CrossRefGoogle Scholar
  122. 122.
    Korram, J., Dewangan, L., Nagwanshi, R., Karbhal, I., Ghosha, K.K., Satnami, M.L.: A carbon quantum dot–gold nanoparticle system as a probe for the inhibition and reactivation of acetylcholinesterase: detection of pesticides. New J. Chem. 43, 6874–6882 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations