Advertisement

On the Potential for Facial Attractiveness as a Soft Biometric

  • Moneera AlnamnakaniEmail author
  • Sasan MahmoodiEmail author
  • Mark NixonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11845)

Abstract

This paper describes the first study on whether human facial attractiveness can be used as a soft biometric feature. By using comparative soft biometrics, with ranking and classification, we show that attractiveness does have the capability to be used within a recognition framework using crowdsourcing, by using groups from the LFW dataset. In this initial study, the Elo rating system is employed to rank subjects’ facial attractiveness based on the comparative descriptions. We will show how facial attractiveness attributes can be exploited for identification purposes and can be described in the same way and can add to performance of comparative soft biometrics attributes. Attractiveness does not appear to be as powerful as gender for recognition. It does however increase recognition capability and it is interesting that a perceptual characteristic can improve performance in this way.

Keywords

Comparative soft biometrics Face recognition Facial attractiveness Facial attributes Ranking 

References

  1. 1.
    Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and COTS evaluation. IEEE TIFS 13(8), 2001–2014 (2018)Google Scholar
  2. 2.
    Zhang, H., Beveridge, J.R., Draper, B.A., Phillips, P.J.: On the effectiveness of soft biometrics for increasing face verification rates. CVIU 137, 50–62 (2015)Google Scholar
  3. 3.
    Reid, D., Nixon, M., Stevenage, S.: Soft biometrics; human identification using comparative descriptions. IEEE TPAMI 36(6), 1216–1228 (2013)CrossRefGoogle Scholar
  4. 4.
    Tome, P., Fierrez, J., Vera-Rodriguez, R., Nixon, M.: Soft biometrics and their application in person recognition at a distance. IEEE TIFS 9(3), 464–475 (2014)Google Scholar
  5. 5.
    Arigbabu, O., Ahmad, S., Adnan, W., Yussof, S.: Recent advances in facial soft biometrics. Vis. Comput. 31(5), 513–525 (2014)CrossRefGoogle Scholar
  6. 6.
    Nixon, M., Correia, P., Nasrollahi, K., Moeslund, T., Hadid, A., Tistarelli, M.: On soft biometrics. Pattern Recogn. Lett. 68, 218–230 (2015)CrossRefGoogle Scholar
  7. 7.
    Parikh, D., Grauman, K.: Relative attributes. In: IEEE ICCV, pp. 503–510 (2011)Google Scholar
  8. 8.
    Almudhahka, N., Nixon, M., Hare, J.: Semantic face signatures: recognizing and retrieving faces by verbal descriptions. IEEE TIFS 13(3), 706–716 (2018)Google Scholar
  9. 9.
    Samangooei, S., Guo, B., Nixon, M.: The use of semantic human description as a soft biometric. In: Proceedings of the BTAS, pp. 1–7 (2008)Google Scholar
  10. 10.
    Martinho-Corbishley, D., Nixon, M., Carter, J.N.: Super-fine attributes with crowd prototyping. IEEE TPAMI 41(6), 1486–1500 (2018)CrossRefGoogle Scholar
  11. 11.
    Jaha, E., Nixon, M.: From clothing to identity: manual and automatic soft biometrics. IEEE TIFS 11(10), 2377–2390 (2016)Google Scholar
  12. 12.
    Shepherd, J., Ellis, H.: The effect of attractiveness on recognition memory for faces. Am. J. Psychol. 86(3), 627 (1973)CrossRefGoogle Scholar
  13. 13.
    Kagian, A., Dror, G., Leyvand, T., Cohen-Or, D., Ruppin, E.: A humanlike predictor of facial attractiveness. In: NIPS, pp. 1–8 (2007)Google Scholar
  14. 14.
    Liu, S., Fan, Y., Samal, A., Guo, Z.: Advances in computational facial attractiveness methods. Multimed. Tools Appl. 75(23), 16633–16663 (2016)CrossRefGoogle Scholar
  15. 15.
    Chen, F., Zhang, D.: A benchmark for geometric facial beauty study. In: Zhang, D., Sonka, M. (eds.) ICMB 2010. LNCS, vol. 6165, pp. 21–32. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13923-9_3CrossRefGoogle Scholar
  16. 16.
    Thornhill, R., Gangestad, S.: Facial attractiveness. Trends Cognit. Sci. 3(12), 452–460 (1999)CrossRefGoogle Scholar
  17. 17.
    Cunningham, M.: Measuring the physical in physical attractiveness: quasi-experiments on the sociobiology of female facial beauty. J. Pers. Soc. Psychol. 50(5), 925–935 (1986)CrossRefGoogle Scholar
  18. 18.
    Eisenthal, Y., Dror, G., Ruppin, E.: Facial attractiveness: beauty and the machine. Neural Comput. 18, 119–142 (2006)CrossRefGoogle Scholar
  19. 19.
    Xie, D., Liang, L., Jin, L., Xu, J., Li, M.: SCUT-FBP: a benchmark dataset for facial beauty perception. In: Proceedings of the IEEE SMC, pp. 1821–1826 (2015)Google Scholar
  20. 20.
    Rhodes, G.: The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006)CrossRefGoogle Scholar
  21. 21.
    Huang, G., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical report 07-49, University of Massachusetts Amherst (2007)Google Scholar
  22. 22.
    Welinder, P., Perona, P.: Online crowdsourcing: rating annotators and obtaining cost-effective labels. In: Proceedings of the IEEE CVPR Workshops, pp. 25–32 (2010)Google Scholar
  23. 23.
    Guo, B., Nixon, M.: Gait feature subset selection by mutual information. IEEE TSMC A 39(1), 36–46 (2009)Google Scholar
  24. 24.
    Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection. Pattern Recogn. Lett. 15(11), 1119–1125 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Southampton UniversitySouthamptonUK

Personalised recommendations