Advertisement

Centerline Extraction from 3D Airway Trees Using Anchored Shrinking

  • Kálmán PalágyiEmail author
  • Gábor Németh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11845)

Abstract

Centerline is a frequently applied 1D representation of 3D tubular and tree-like objects. This paper proposes a new curve skeletonization algorithm, which is computationally efficient, guarantees 1-point wide centerlines, and does not generate ‘spurious’ branches. The reported method is specifically targeting segmented intrathoracic airway trees but it is applicable to many other tasks. Our algorithm is based on iterative shrinking combined with branch-end detection and preservation.

Keywords

Skeletonization 3D Centerline Digital topology Shrinking Medical image analysis 

Notes

Acknowledgments

This research was supported by the project “Integrated program for training new generation of scientists in the fields of computer science”, no EFOP-3.6.3-VEKOP-16-2017-0002. The project has been supported by the European Union and co-funded by the European Social Fund.

References

  1. 1.
    Bertrand, G., Couprie, M.: Powerful parallel and symmetric 3D thinning schemes based on critical kernels. J. Math. Imaging Vis. 48, 134–148 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Couprie, M.: Transformations topologiques discrètes. In: Coeurjolly, D., Montanvert, A., Chassery, J. (eds.) Géométrie discrète et images numériques, pp. 187–209. Hermès Science Publications (2007)Google Scholar
  3. 3.
    Bitter, I., Kaufman, A.E., Sato, M.: Penalized-distance volumetric skeleton algorithm. IEEE Trans. Vis. Comput. Graph. 7, 195–206 (2001)CrossRefGoogle Scholar
  4. 4.
    Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9, 209–221 (2005)CrossRefGoogle Scholar
  5. 5.
    Hall, R.W., Kong, T.Y., Rosenfeld, A.: Shrinking binary images. In: Kong, T.Y., Rosenfeld, A. (eds.) Topological Algorithms for Digital Image Processing, pp. 31–98. Elsevier Science B. V. (1996)Google Scholar
  6. 6.
    Jin, D., Chen, C., Hoffman, E.A., Saha, P.K.: Curve skeletonization using minimum-cost path. In: Saha, P.K., Borgefors, G., Sanniti di Baja, G. (eds.) Skeletonization: Theory, Methods and Applications, pp. 151–180. Academic Press (2017)Google Scholar
  7. 7.
    Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)CrossRefGoogle Scholar
  8. 8.
    Malandain, G., Bertrand, G.: Fast characterization of 3D simple points. In: Proceedings of the 11th IEEE International Conference on Pattern Recognition, ICPR 1992, pp. 232–235 (1992)Google Scholar
  9. 9.
    Palágyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitative analysis of pulmonary airway tree structures. Comput. Biol. Med. 36, 974–996 (2006)CrossRefGoogle Scholar
  10. 10.
    Palágyi, K., Németh, G., Kardos, P.: Topology preserving parallel 3D thinning algorithms. In: Brimkov, V.E., Barneva, R.P. (eds.) Digital Geometry Algorithms. Theoretical Foundations and Applications to Computational Imaging, pp. 165–188. Springer, Dordrecht (2012).  https://doi.org/10.1007/978-94-007-4174-4_6CrossRefzbMATHGoogle Scholar
  11. 11.
    Palágyi, K.: A sequential 3D curve-thinning algorithm based on isthmuses. In: Bebis, G., et al. (eds.) ISVC 2014. LNCS, vol. 8888, pp. 406–415. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14364-4_39CrossRefGoogle Scholar
  12. 12.
    Saha, P.K., Chaudhury, B.B.: Detection of 3-D simple points for topology preserving transformations with application to thinning. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1028–1032 (1994)CrossRefGoogle Scholar
  13. 13.
    Saha, P.K., Borgefors, G., Sanniti di Baja, G.: A survey on skeletonization algorithms and their applications. Pattern Recogn. Lett. 76, 3–12 (2016)CrossRefGoogle Scholar
  14. 14.
    Saha, P.K., Borgefors, G., Sanniti di Baja, G. (eds.): Skeletonization: Theory, Methods and Applications. Academic Press, Cambridge (2017)Google Scholar
  15. 15.
    Shaked, D., Bruckstein, A.: Pruning medial axes. Comput. Vis. Image Underst. 69, 156–169 (1998)CrossRefGoogle Scholar
  16. 16.
    Siddiqi, K., Pizer, S. (eds.): Medial Representations – Mathematics, Algorithms and Applications. Computational Imaging and Vision, vol. 37. Springer, Dordrecht (2008).  https://doi.org/10.1007/978-1-4020-8658-8CrossRefzbMATHGoogle Scholar
  17. 17.
    Sobiecki, A., Jalba, A., Telea, A.: Comparison of curve and surface skeletonization methods for voxel shapes. Pattern Recogn. Lett. 47, 147–156 (2014)CrossRefGoogle Scholar
  18. 18.
    Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., Telea, A.: 3D skeletons: a state-of-the-art report. In: Proceedings of the Conference on European Association for Computer Graphics, EG 2016, pp. 573–597 (2016)Google Scholar
  19. 19.
    Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman, A.: Automatic centerline extraction for virtual colonoscopy. IEEE Trans. Med. Imaging 21, 1450–1460 (2002)CrossRefGoogle Scholar
  20. 20.
    Wong, W.C.K., So, R.W.K., Chung, A.C.S.: Principal curves for lumen center extraction and flow channel width estimation in 3-D arterial networks: theory, algorithm, and validation. IEEE Trans. Image Process. 21, 1847–1862 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Image Processing and Computer GraphicsUniversity of SzegedSzegedHungary

Personalised recommendations