Advertisement

Skin Lesion Segmentation Based on Region-Edge Markov Random Field

  • Omran Salih
  • Serestina ViririEmail author
  • Adekanmi Adegun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11845)

Abstract

This paper presents a probabilistic model based on Markov Random Field (MRF) theory to achieve skin lesion segmentation. MRF theory plays a significant potential role in the image segmentation field. It has several models based on its theory such as region-based MRF model and edge-based MRF model to detect object, boundaries and other relevant information in an image. The proposed method aims to combine the advantages of these two models by computing the product of the regional likelihood function and edge likelihood function. Regional features and edge features are used to solve the maximum a posteriori (MAP) estimation problem to find the best estimation for better image segmentation. The algorithm starts from pre-processing obtained by convolution technique, and iteratively refines the segmentation by taking into account several metrics of region homogeneity under a probabilistic framework. The technical content is described in detail, and the algorithm was tested on the International Skin Imaging Collaboration (ISIC) database, showing its potential. The proposed method shows a significant improvement when compared with individual lesion segmentation methods in ISIC 2018 challenge with overall results achieved as Jaccard Index of \(76.40\%\).

Keywords

Markov random field Skin lesion Segmentation 

References

  1. 1.
    Besag, J.: On the statistical analysis of dirty pictures. J. Roy. Stat. Soc.: Ser. B (Methodol.) 48(3), 259–279 (1986)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Derin, H., Elliott, H.: Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans. Pattern Anal. Mach. Intell. 9(1), 39–55 (1987)CrossRefGoogle Scholar
  3. 3.
    Celebi, M.E., et al.: Automatic detection of blue-white veil and related structures in dermoscopy images. Comput. Med. Imaging Graph. 32(8), 670–677 (2008)CrossRefGoogle Scholar
  4. 4.
    Celebi, M.E., et al.: A methodological approach to the classification of dermoscopy images. Comput. Med. Imaging Graph. 31(6), 362–373 (2007)CrossRefGoogle Scholar
  5. 5.
    Chien, S.Y., Huang, Y.W., Chen, L.G.: Predictive watershed: a fast watershed algorithm for video segmentation. IEEE Trans. Circ. Syst. Video Technol. 13(5), 453–461 (2003)CrossRefGoogle Scholar
  6. 6.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 5, 603–619 (2002)CrossRefGoogle Scholar
  7. 7.
    Detmar, M.: Tumor angiogenesis. J. Invest. Dermatol. Symp. Proc. 5(1), 20–23 (2000)CrossRefGoogle Scholar
  8. 8.
    Jie, F., Shi, Y., Li, Y., Liu, Z.: Interactive region-based MRF image segmentation. In: 2011 4th International Congress on Image and Signal Processing (CISP), vol. 3, pp. 1263–1267. IEEE (2011)Google Scholar
  9. 9.
    Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image Process. 33(1), 116–125 (1986) CrossRefGoogle Scholar
  10. 10.
    Torkashvand, F., Fartash, M.: Automatic segmentation of skin lesion using Markov random field. Can. J. Basic Appl. Sci. 3(3), 93–107 (2015)Google Scholar
  11. 11.
    Eltayef, K., Li, Y., Liu, X.: Lesion segmentation in dermoscopy images using particle swarm optimization and Markov random field. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 739–744. IEEE (2017)Google Scholar
  12. 12.
    Krishnamachari, S., Chellappa, R.: Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Trans. Image Process. 6(2), 251–267 (1997)CrossRefGoogle Scholar
  13. 13.
    Noda, H., Shirazi, M.N., Kawaguchi, E.: MRF-based texture segmentation using wavelet decomposed images. Pattern Recogn. 35(4), 771–782 (2002)CrossRefGoogle Scholar
  14. 14.
    Xia, Y., Feng, D., Zhao, R.: Semi-supervised segmentation of textured images by using coupled MRF model. In: TENCON 2005-2005 IEEE Region 10 Conference, pp. 1–5. IEEE (2005)Google Scholar
  15. 15.
    Xia, G.S., He, C., Sun, H.: An unsupervised segmentation method using Markov random field on region adjacency graph for SAR images. In: 2006 CIE International Conference on Radar, pp. 1–4. IEEE (2006)Google Scholar
  16. 16.
    Yu, Q., Clausi, D.A.: IRGS: image segmentation using edge penalties and region growing. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2126–2139 (2008)CrossRefGoogle Scholar
  17. 17.
    Kuo, W.F., Sun, Y.N.: Watershed segmentation with automatic altitude selection and region merging based on the Markov random field model. Int. J. Pattern Recognit Artif Intell. 24(1), 153–171 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    ISIC: Skin Lesion Analysis Towards Melanoma Detection (2019). https://challenge2018.isic-archive.com/. Accessed 13 June
  19. 19.
    Jerant, A.F., Johnson, J.T., Demastes Sheridan, C., Caffrey, T.J.: Early detection and treatment of skin cancer. Am. Fam. Physician 62(2), 381–382 (2000)Google Scholar
  20. 20.
    Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: Turbopixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)CrossRefGoogle Scholar
  21. 21.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis, 3rd edn. Springer, London (2009).  https://doi.org/10.1007/978-1-84800-279-1CrossRefzbMATHGoogle Scholar
  22. 22.
    Jaisakthi, S.M., Chandrabose, A., Mirunalini, P.: Automatic skin lesion segmentation using semi-supervised learning technique. arXiv preprint arXiv:1703.04301 (2017)
  23. 23.
    Real, R., Vargas, J.M.: The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 45(3), 380–385 (1996)CrossRefGoogle Scholar
  24. 24.
    Recasens, M., Hovy, E.: BLANC: implementing the Rand index for coreference evaluation. Nat. Lang. Eng. 17(4), 485–510 (2011)CrossRefGoogle Scholar
  25. 25.
    Rogers, H.W., Weinstock, M.A., Feldman, S.R., Coldiron, B.M.: Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol. 151(10), 1081–1086 (2015)CrossRefGoogle Scholar
  26. 26.
    Salih, O., Viriri, S.: Skin cancer segmentation using a unified Markov random field. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 25–33. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03801-4_3CrossRefGoogle Scholar
  27. 27.
    Salih, O., Viriri, S.: Skin lesion segmentation using enhanced unified Markov random field. In: Groza, A., Prasath, R. (eds.) MIKE 2018. LNCS (LNAI), vol. 11308, pp. 331–340. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05918-7_30CrossRefGoogle Scholar
  28. 28.
    Alvarez, D., Iglesias, M.: k-Means clustering and ensemble of regressions: an algorithm for the ISIC 2017 skin lesion segmentation challenge. arXiv preprint arXiv:1702.07333 (2017)
  29. 29.
    Sathya, B., Manavalan, R.: Image segmentation by clustering methods: performance analysis. Int. J. Comput. Appl. 29(11), 27–32 (2011)Google Scholar
  30. 30.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. Departmental Papers (CIS), p. 107 (2000)Google Scholar
  31. 31.
    Garcia-Arroyo, J.L., Garcia-Zapirain, B.: Segmentation of skin lesions based on fuzzy classification of pixels and histogram thresholding. arXiv preprint arXiv:1703.03888 (2017)
  32. 32.
    Wong, A., Scharcanski, J., Fieguth, P.: Automatic skin lesion segmentation via iterative stochastic region merging. IEEE Trans. Inf Technol. Biomed. 15(6), 929–936 (2011)CrossRefGoogle Scholar
  33. 33.
    Chen, X., Zheng, C., Yao, H., Wang, B.: Image segmentation using a unified Markov random field model. IET Image Proc. 11(10), 860–869 (2017)CrossRefGoogle Scholar
  34. 34.
    Xu, L., et al.: Segmentation of skin cancer images. Image Vis. Comput. 17(1), 65–74 (1999)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Jahanifar, M., Tajeddin, N.Z., Asl, B.M., Gooya, A.: Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE J. Biomed. Health Inf. 23(2), 509–518 (2018)CrossRefGoogle Scholar
  36. 36.
    Galdran, A., et al.: Data-driven color augmentation techniques for deep skin image analysis. arXiv preprint arXiv:1703.03702 (2017)
  37. 37.
    Gutierrez-Arriola, J.M., Gomez-Alvarez, M., Osma-Ruiz, V., Saenz-Lechon, N., Fraile, R.: Skin lesion segmentation based on preprocessing, thresholding and neural networks. arXiv preprint arXiv:1703.04845 (2017)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omran Salih
    • 1
  • Serestina Viriri
    • 1
    Email author
  • Adekanmi Adegun
    • 1
  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations