Advertisement

Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification

  • Qiaosong WangEmail author
  • Christopher Rasmussen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11845)

Abstract

Fine-grained classification is a challenging problem due to subtle differences between intra-class categories. In practice, fine-grained classification is often used in conjunction with object detection algorithms to locate and identify object categories. Despite recent achievements in both fine-grained classification and object detection, few works have demonstrated datasets or solutions to simultaneously handle both tasks. We make two contributions to this problem. Firstly, we construct a fine-grained classification and detection benchmark. Secondly, we show an end-to-end convolutional neural networks (CNNs) architecture to detect and classify fine-grained objects. Experimental results verify that our networks perform favorably against alternatives.

Keywords

Object detection Fine-grained classification 

References

  1. 1.
    Sighthound cloud API for vehicle recognition. https://www.sighthound.com/products/cloud
  2. 2.
    Tesseract open source OCR engine. https://github.com/tesseract-ocr/tesseract
  3. 3.
    Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)CrossRefGoogle Scholar
  4. 4.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)Google Scholar
  5. 5.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)Google Scholar
  6. 6.
    Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: CVPR, pp. 1173–1182 (2016)Google Scholar
  7. 7.
    Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)Google Scholar
  8. 8.
    Kong, S., Fowlkes, C.: Low-rank bilinear pooling for fine-grained classification. In: CVPR, pp. 7025–7034. IEEE (2017)Google Scholar
  9. 9.
    Krause, J., Jin, H., Yang, J., Fei-Fei, L.: Fine-grained recognition without part annotations. In: CVPR, pp. 5546–5555 (2015)Google Scholar
  10. 10.
    Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 3dRR, Sydney, Australia (2013)Google Scholar
  11. 11.
    Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)Google Scholar
  12. 12.
    Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in defense of two-stage object detector. arXiv preprint arXiv:1711.07264 (2017)
  13. 13.
    Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: ICCV, pp. 1449–1457 (2015)Google Scholar
  14. 14.
    Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  15. 15.
    Liu, X., Wang, J., Wen, S., Ding, E., Lin, Y.: Localizing by describing: attribute-guided attention localization for fine-grained recognition. In: AAAI, pp. 4190–4196 (2017)Google Scholar
  16. 16.
    Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)zbMATHGoogle Scholar
  17. 17.
    Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Is object localization for free?-weakly-supervised learning with convolutional neural networks. In: CVPR, pp. 685–694 (2015)Google Scholar
  18. 18.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788 (2016)Google Scholar
  19. 19.
    Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. arXiv preprint (2017)Google Scholar
  20. 20.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)Google Scholar
  21. 21.
    Simon, M., Rodner, E.: Neural activation constellations: unsupervised part model discovery with convolutional networks. In: ICCV, pp. 1143–1151 (2015)Google Scholar
  22. 22.
    Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)
  23. 23.
    Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)
  24. 24.
    Welinder, P., et al.: Caltech-UCSD Birds 200. Technical report, CNS-TR-2010-001, California Institute of Technology (2010)Google Scholar
  25. 25.
    Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: CVPR, pp. 842–850 (2015)Google Scholar
  26. 26.
    Xie, S., Yang, T., Wang, X., Lin, Y.: Hyper-class augmented and regularized deep learning for fine-grained image classification. In: CVPR, pp. 2645–2654 (2015)Google Scholar
  27. 27.
    Yang, L., Luo, P., Change Loy, C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: CVPR, pp. 3973–3981 (2015)Google Scholar
  28. 28.
    Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10590-1_54CrossRefGoogle Scholar
  29. 29.
    Zhang, X., Zhou, F., Lin, Y., Zhang, S.: Embedding label structures for fine-grained feature representation. In: CVPR, pp. 1114–1123 (2016)Google Scholar
  30. 30.
    Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: ICCV, vol. 6 (2017)Google Scholar
  31. 31.
    Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesUniversity of DelawareNewarkUSA

Personalised recommendations