Topologically-Guided Color Image Enhancement

  • Junyi Tu
  • Paul RosenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11845)


Enhancement is an important step in post-processing digital images for personal use, in medical imaging, and for object recognition. Most existing manual techniques rely on region selection, similarity, and/or thresholding for editing, never really considering the topological structure of the image. In this paper, we leverage the contour tree to extract a hierarchical representation of the topology of an image. We propose 4 topology-aware transfer functions for editing features of the image using local topological properties, instead of global image properties. Finally, we evaluate our approach with grayscale and color images.


Image editing Topological Data Analysis Contour tree 



This project was supported in part by the National Science Foundation (IIS-1513616 and IIS-1845204).


  1. 1.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
  2. 2.
    Aydogan, D.B., Hyttinen, J.: Binary image representation by contour trees. In: Medical Imaging 2012: Image Processing, vol. 8314, p. 83142X (2012)Google Scholar
  3. 3.
    Boyell, R.L., Ruston, H.: Hybrid techniques for real-time radar simulation. In: Proceedings of 1963 Fall Joint Computer Conference, pp. 445–458 (1963)Google Scholar
  4. 4.
    Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. (TOG) 21(3), 249–256 (2002)CrossRefGoogle Scholar
  8. 8.
    Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 26 (2018)CrossRefGoogle Scholar
  9. 9.
    Kervrann, C., Boulanger, J.: Patch-based image denoising (2019).
  10. 10.
    Kurlin, V.: A fast persistence-based segmentation of noisy 2D clouds with provable guarantees. Pattern Recogn. Lett. 83, 3–12 (2016)CrossRefGoogle Scholar
  11. 11.
    Letscher, D., Fritts, J.: Image segmentation using topological persistence. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) Computer Analysis of Images and Patterns, pp. 587–595 (2007)Google Scholar
  12. 12.
    Liu, T., Seyedhosseini, M., Tasdizen, T.: Image segmentation using hierarchical merge tree. IEEE Trans. Image Process. 25(10), 4596–4607 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Majumder, A., Irani, S.: Contrast enhancement of images using human contrast sensitivity. In: Applied Perception in Graphics and Visualization, pp. 69–76 (2006)Google Scholar
  14. 14.
    Robles, A., Hajij, M., Rosen, P.: The shape of an image - a study of mapper on images. In: International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), pp. 339–347 (2018)Google Scholar
  15. 15.
    Rosen, P., Tu, J., Piegl, L.A.: A hybrid solution to parallel calculation of augmented join trees of scalar fields in any dimension. Comput. Aided Design Appl. 15(4), 610–618 (2018)CrossRefGoogle Scholar
  16. 16.
    Tu, J., Hajij, M., Rosen, P.: Propagate and pair: a single-pass approach to critical point pairing in Reeb graphs. In: International Symposium on Visual Computing (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations