Bioinspired Simulation of Knotting Hagfish

  • Yura Hwang
  • Theodore A. Uyeno
  • Shinjiro SuedaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11844)


Hagfish are capable of not only forming knots, but also sliding them along the length of their bodies. This remarkable behavior is used by the animal for a wide variety of purposes, such as feeding and manipulation. Clearly of interest to biologists, this knotting behavior is also relevant to other fields, such as bioinspired soft robotics. However, this knot-sliding behavior has been challenging to model and has not been simulated on a computer. In this paper, we present the first physics-based simulation of the knot-sliding behavior of hagfish. We show that a contact-based inverse dynamics approach, motivated by the biological concept called positive thigmotaxis, works very well for this challenging control problem.


Simulation Biology Physics-based Knots 



We thank Austin Haney for helping to record video of knotting Pacific hagfish, Eptatretus stoutii and Washington Department of Fish and Wildlife officer Donna Downs for their procurement. This work was supported in part by the National Science Foundation (IOS-1354788 to T.A.U. and CAREER-1846368 to S.S.).


  1. 1.
    Adam, H.: Different types of body movement in the hagfish, myxine glutinosa l. Nature 188(4750), 595–596 (1960)Google Scholar
  2. 2.
    Alexander, J.W., Briggs, G.B.: On types of knotted curves. Ann. Math. 28(1/4), 562–586 (1926)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Andrew, W., Hickman, C.P.: Histology of the Vertebrates: A Comparative Text. Mosby, Saint Louis (1974)Google Scholar
  4. 4.
    Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1994, pp. 23–34. ACM, New York, NY, USA (1994)Google Scholar
  5. 5.
    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., Grinspun, E.: Discrete elastic rods. ACM Trans. Graph. 27(3), 63:1–63:12 (2008)Google Scholar
  7. 7.
    Bertails, F., Audoly, B., Cani, M.P., Querleux, B., Leroy, F., Lévêque, J.L.: Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25(3), 1180–1187 (2006)Google Scholar
  8. 8.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)zbMATHGoogle Scholar
  9. 9.
    Brown, J., Latombe, J.C., Montgomery, K.: Real-time knot-tying simulation. Vis. Comput. 20(2), 165–179 (2004)Google Scholar
  10. 10.
    Clark, A.J., Crawford, C.H., King, B.D., Demas, A.M., Uyeno, T.A.: Material properties of hagfish skin, with insights into knotting behaviors. Biol. Bull. 230(3), 243–256 (2016)Google Scholar
  11. 11.
    Clark, A.J., Summers, A.: Ontogenetic scaling of the morphology and biomechanics of the feeding apparatus in the Pacific hagfish Eptatretus stoutii. J. Fish Biol. 80, 86–99 (2012)Google Scholar
  12. 12.
    Clubb, B.L., Clark, A.J., Uyeno, T.A.: Powering the hagfish “bite”: the functional morphology of the retractor complex of two hagfish feeding apparatuses. J. Morphol. 280(6), 827–840 (2019)Google Scholar
  13. 13.
    Deul, C., Kugelstadt, T., Weiler, M., Bender, J.: Direct position-based solver for stiff rods. Comput. Graph. Forum 37(6), 313–324 (2018)Google Scholar
  14. 14.
    Evans, E., Hwang, Y., Sueda, S., Uyeno, T.A.: Estimating whole body flexibility in pacific hagfish. In: The Society for Integrative & Comparative Biology, 3–7 January 2018Google Scholar
  15. 15.
    Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robot. Res. 2(1), 13–30 (1983)Google Scholar
  16. 16.
    Haney, W.A.: Characterization of body knotting behavior in hagfish. Master’s thesis, Valdosta State University, May 2017Google Scholar
  17. 17.
    Jain, S., Liu, C.K.: Controlling physics-based characters using soft contacts. ACM Trans. Graph. 30(6), 163:1–163:10 (2011)Google Scholar
  18. 18.
    Kaufman, D.M., Sueda, S., James, D.L., Pai, D.K.: Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27(5), 164:1–164:11 (2008)Google Scholar
  19. 19.
    Kim, J., Pollard, N.S.: Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph. 30(5), 1–19 (2011)Google Scholar
  20. 20.
    Lee, Y., Park, M.S., Kwon, T., Lee, J.: Locomotion control for many-muscle humanoids. ACM Trans. Graph. 33(6), 218:1–218:11 (2014)zbMATHGoogle Scholar
  21. 21.
    Liu, L., Yin, K., Wang, B., Guo, B.: Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32(6), 1–8 (2013)Google Scholar
  22. 22.
    Long, J.H., Koob-Emunds, M., Sinwell, B., Koob, T.J.: The notochord of hagfish myxine glutinosa: visco-elastic properties and mechanical functions during steady swimming. J. Exper. Biol. 205(24), 3819–3831 (2002)Google Scholar
  23. 23.
    Martini, F.H.: The ecology of hagfishes. In: Jørgensen, J.M., Lomholt, J.P., Weber, R.E., Malte, H. (eds.) The Biology of Hagfishes, pp. 57–77. Springer, Netherlands (1998). Scholar
  24. 24.
    Miller, T.J.: Feeding behavior of echidna nebulosa, enchelycore pardalis, and gymnomuraena zebra (teleostei: Muraenidae). Copeia, 662–672 (1989)Google Scholar
  25. 25.
    Pai, D.K.: Strands: interactive simulation of thin solids using cosserat models. Comput. Graph. Forum 21(3), 347–352 (2002)Google Scholar
  26. 26.
    Phillips, J., Ladd, A., Kavraki, L.E.: Simulated knot tying. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 841–846. IEEE (2002)Google Scholar
  27. 27.
    Pickwell, G.V.: Knotting and coiling behavior in the pelagic sea snake pelamis platurus (l.). Copeia 1971(2), 348–350 (1971)Google Scholar
  28. 28.
    Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467 (2015)Google Scholar
  29. 29.
    Shinar, T., Schroeder, C., Fedkiw, R.: Two-way coupling of rigid and deformable bodies. In: Proceedings of SCA 2008, pp. 95–103 (2008)Google Scholar
  30. 30.
    Simaan, N.: Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. Proceedings of ICRA 2005, pp. 3012–3017 (2005)Google Scholar
  31. 31.
    Strahan, R.: The behaviour of myxinoids. Acta Zoologica 44(1–2), 73–102 (1963)Google Scholar
  32. 32.
    Sueda, S., Jones, G.L., Levin, D.I.W., Pai, D.K.: Large-scale dynamic simulation of highly constrained strands. ACM Trans. Graph. 30(4), 39:1–39:10 (2011)Google Scholar
  33. 33.
    Sueda, S., Kaufman, A., Pai, D.K.: Musculotendon simulation for hand animation. ACM Trans. Graph. 27(3), 83:1–83:8 (2008)Google Scholar
  34. 34.
    Sumbre, G., Fiorito, G., Flash, T., Hochner, B.: Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biol. CB 16, 767–72 (2006)Google Scholar
  35. 35.
    Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006)Google Scholar
  36. 36.
    Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)Google Scholar
  37. 37.
    Uyeno, T.A., Clark, A.J.: Muscle articulations: flexible jaw joints made of soft tissues. Integr. Comp. Biol. 55(2), 193–204 (2015)Google Scholar
  38. 38.
    Vladu, I., Strîmbeanu, D., Ivănescu, M., Bîzdoacă, N., Vladu, C., Florescu, M.: Control system for a hyper-redundant robot. IFAC Proc. Vol. 45(6), 853–858 (2012)Google Scholar
  39. 39.
    Wang, Y., Weidner, N.J., Baxter, M.A., Hwang, Y., Kaufman, D.M., Sueda, S.: REDMAX: efficient & flexible approach for articulated dynamics. ACM Trans. Graph. 38(4), 104:1–104:10 (2019)Google Scholar
  40. 40.
    Zintzen, V., Roberts, C.D., Anderson, M.J., Stewart, A.L., Struthers, C.D., Harvey, E.S.: Hagfish predatory behaviour and slime defence mechanism. Sci. Rep. 1, 131 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yura Hwang
    • 1
  • Theodore A. Uyeno
    • 2
  • Shinjiro Sueda
    • 1
    Email author
  1. 1.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of BiologyValdosta State UniversityValdostaGeorgia

Personalised recommendations