Heart Rate Based Face Synthesis for Pulse Estimation
Abstract
With the technological advancements in non-invasive heart rate (HR) detection, it becomes more feasible to estimate heart rate using commodity digital cameras. However, achieving high accuracy in HR estimation still remains a challenge. One of the bottlenecks is the lack of sufficient facial videos annotated with corresponding HR signals. In order to prevent this bottleneck, we propose to create videos enriched with different HR values from existing data sets with an attempt to increase the data size in a controllable manner. This paper presents a new method to generate facial videos with various heart rate values through a video synthesis procedure. Our method involves the synthesis of heart beat effects from skin colors of a face. New face video is generated with various heart rate values while taking identity information into account. The quality of the synthetic videos is evaluated by comparing to the original ground truth videos at the pixel level as well as by computing their differentiability across the synthetic face videos. Furthermore, the usability of the new data is assessed through the application of HR estimation from remote video approaches.
Keywords
Heart rate synthesis Remote heart rate estimation Face synthesis and analysisNotes
Acknowledgement
The material is based upon the work supported in part by the National Science Foundation under grants CNS-1629898 and CNS-1205664.
References
- 1.Aarts, L.A., Jeanne, V., Cleary, J.P., Lieber, C., Nelson, J.S., Oetomo, S.B., Verkruysse, W.: Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit-a pilot study. Early Human Dev. 89(12), 943–948 (2013)CrossRefGoogle Scholar
- 2.Al-Ali, A., Diab, M.K., Coverston, R., Maurer, G., Schmidt, J., Schulz, C.: Pulse oximetry sensor, 9 October 2007, patent 7,280,858Google Scholar
- 3.Baltrusaitis, T., Robinson, P., Morency, L.P.: Openface: an open source facial behavior analysis toolkit. In: WACV, pp. 1–10. IEEE Computer Society (2016)Google Scholar
- 4.Bao, S.D., Zhang, Y.T., Shen, L.F.: Physiological signal based entity authentication for body area sensor networks and mobile healthcare systems. In: IEEE Engineering in Medicine and Biology (2006)Google Scholar
- 5.Biopack. https://www.biopac.com
- 6.Bobbia, S., Benezeth, Y., Dubois, J.: Remote photoplethysmography based on implicit living skin tissue segmentation. In: IEEE ICPR, pp. 361–365 (2016)Google Scholar
- 7.Chekmenev, S.Y., Rara, H., Farag, A.A.: Non-contact, wavelet-based measurement of vital signs using thermal imaging. In: The 1st International Conference on Graphics, Vision, and Image Processing (GVIP), pp. 107–112 (2005)Google Scholar
- 8.Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: IEEE CVPR (2017)Google Scholar
- 9.De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)CrossRefGoogle Scholar
- 10.Feng, L., Po, L., Xu, X., Li, Y., Ma, R.: Motion-resistant remote imaging photoplethysmography based on the optical properties of skin. IEEE Trans. Circuits Syst. Video Technol. 25(5), 879–891 (2015)CrossRefGoogle Scholar
- 11.Gibert, G., D’Alessandro, D., Lance, F.: Face detection method based on photoplethysmography. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2013)Google Scholar
- 12.Gordon, J.W.: Certain molar movements of the human body produced by the circulation of the blood. J. Anat. Physiol. 11(Pt 3), 533–536 (1877)Google Scholar
- 13.Hassan, M., et al.: Heart rate estimation using facial video: a review. Biomed. Signal Process. Control 38, 346–360 (2017)CrossRefGoogle Scholar
- 14.Hsu, G., Ambikapathi, A., Chen, M.: Deep learning with time-frequency representation for pulse estimation from facial videos. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 383–389, October 2017Google Scholar
- 15.Hsu, Y., Lin, Y., Hsu, W.: Learning-based heart rate detection from remote photoplethysmography features. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4433–4437 (2014)Google Scholar
- 16.Inan, O.T., et al.: Ballistocardiography and seismocardiography: a review of recent advances. IEEE J. Biomed. Health Inf. 19(4), 1414–1427 (2015)CrossRefGoogle Scholar
- 17.Jose, A.D., Collison, D.: The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 4(2), 160–167 (1970)CrossRefGoogle Scholar
- 18.Kakria, P., Tripathi, N.K., Kitipawang, P.: A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int. J. Telemed. Appl. 2015, 373474 (2015)Google Scholar
- 19.Kranjec, J., Beguš, S., Geršak, G., Drnovšek, J.: Non-contact heart rate and heart rate variability measurements: a review. Biomed. Sig. Process. Control 13, 102–112 (2014)CrossRefGoogle Scholar
- 20.Kumar, M., Veeraraghavan, A., Sabharwal, A.: DistancePPG: robust non-contact vital signs monitoring using a camera. Biomed. Optics Express. 6(5), 1565–1588 (2015)CrossRefGoogle Scholar
- 21.Lam, A., Kuno, Y.: Robust heart rate measurement from video using select random patches. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3640–3648 (2015)Google Scholar
- 22.Lawson, G., Belcher, R., Dawes, G., Redman, C.: A comparison of ultrasound (with autocorrelation) and direct electrocardiogram fetal heart rate detector systems. Am. J. Obstet. Gynecol. 147(6), 721–722 (1983)CrossRefGoogle Scholar
- 23.Lee, A., Kim, Y.: Photoplethysmography as a form of biometric authentication. In: IEEE SENSORS, pp. 1–2 (2015)Google Scholar
- 24.Lee, T.W.: Independent component analysis. In: Lee, T.W. (ed.) Independent Component Analysis, pp. 27–66. Springer, Boston (1998). https://doi.org/10.1007/978-1-4757-2851-4_2CrossRefGoogle Scholar
- 25.Lewandowska, M., Rumiński, J., Kocejko, T., Nowak, J.: Measuring pulse rate with a webcam a non-contact method for evaluating cardiac activity. In: IEEE Federated Conference on Computer Science and Information Systems (FedCSIS) (2011)Google Scholar
- 26.Li, X., Chen, J., Zhao, G., Pietikäinen, M.: Remote heart rate measurement from face videos under realistic situations. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4264–4271, June 2014 Google Scholar
- 27.Lu, G., Yang, F., Taylor, J.A., Stein, J.F.: A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J. Med. Eng. Technol. 33(8), 634–641 (2009)CrossRefGoogle Scholar
- 28.Mestha, L.K., Kyal, S., Xu, B., Lewis, L.E., Kumar, V.: Towards continuous monitoring of pulse rate in neonatal intensive care unit with a webcam. In: IEEE Engineering in Medicine and Biology Society (EMBC) (2014)Google Scholar
- 29.Niu, X., Han, H., Shan, S., Chen, X.: SynRhythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585 (2018)Google Scholar
- 30.Poh, M.Z., McDuff, D.J., Picard, R.W.: Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18(10), 10762–10774 (2010)CrossRefGoogle Scholar
- 31.Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2011)CrossRefGoogle Scholar
- 32.Rouast, P.V., Adam, M.T., Chiong, R., Cornforth, D., Lux, E.: Remote heart rate measurement using low-cost RGB face video: a technical literature review. Front. Comput. Sci. 12(5), 858–872 (2018)CrossRefGoogle Scholar
- 33.Rouast, P.V., Adam, M.T.P., Cornforth, D.J., Lux, E., Weinhardt, C.: Using contactless heart rate measurements for real-time assessment of affective states. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B. (eds.) Information Systems and Neuroscience. LNISO, vol. 16, pp. 157–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-41402-7_20CrossRefGoogle Scholar
- 34.Sameni, R., Clifford, G.D.: A review of fetal ECG signal processing; issues and promising directions. Open Pacing Electrophysiol. Ther. J. 3, 4 (2010)Google Scholar
- 35.Scalise, L., Bernacchia, N., Ercoli, I., Marchionni, P.: Heart rate measurement in neonatal patients using a webcamera. In: IEEE International Symposium on Medical Measurements and Applications (MeMeA) (2012)Google Scholar
- 36.Sodi-Pallares, D.: Electrophysiology of the heart. Am. J. Cardiol. (1961) Google Scholar
- 37.Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)CrossRefGoogle Scholar
- 38.Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J.F., Sebe, N.: Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
- 39.Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)CrossRefGoogle Scholar
- 40.Wang, W., den Brinker, A.C., Stuijk, S., de Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2017)CrossRefGoogle Scholar
- 41.Wang, W., Stuijk, S., De Haan, G.: Unsupervised subject detection via remote PPG. IEEE Trans. Biomed. Eng. 62(11), 2629–2637 (2015)CrossRefGoogle Scholar
- 42.Wang, W., Stuijk, S., De Haan, G.: A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans. Biomed. Eng. 63(9), 1974–1984 (2016)CrossRefGoogle Scholar
- 43.Wang, W., Stuijk, S., de Haan, G.: Living-skin classification via remote-PPG. IEEE Trans. Biomed. Eng. 64(12), 2781–2792 (2017)CrossRefGoogle Scholar
- 44.Yan, Y., Ma, X., Yao, L., Ouyang, J.: Noncontact measurement of heart rate using facial video illuminated under natural light and signal weighted analysis. Biomed. Mater. Eng. 26(s1), S903–S909 (2015)Google Scholar
- 45.Yu, Y.P., Kwan, B.H., Lim, C.L., Wong, S.L., Raveendran, P.: Video-based heart rate measurement using short-time Fourier transform. In: Intelligent Signal Processing and Communications Systems (ISPACS), pp. 704–707. IEEE (2013)Google Scholar
- 46.Zhang, Z., et al.: Multimodal spontaneous emotion corpus for human behavior analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3438–3446 (2016)Google Scholar