Advertisement

Ant-SNE: Tracking Community Evolution via Animated t-SNE

  • Ngan V. T. NguyenEmail author
  • Tommy Dang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11844)

Abstract

We introduce a method for tracking the community evolution and a prototype (Ant-SNE) for analyzing multivariate time series and guiding interactive exploration through high-dimensional data. The method is based on t-distributed Stochastic Neighbor Embedding (t-SNE), a machine learning algorithm for nonlinear dimension reduction well-suited for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions. By tracking the evolution of temporal multivariate data points, we are able to locate unusual behaviors (outliers) and interesting sub-series for further analysis. In the experiments, we conducted two case studies with the US employment dataset and the HPC health status dataset in order to confirm the effectiveness of the proposed system.

Keywords

Multivariate time series analysis Radar charts Scatterplot matrix Parallel coordinates High-dimensional data analysis t-distributed stochastic neighbor embedding 

References

  1. 1.
    Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J.D., Grabowski, T.: Small MultiPiles: piling time to explore temporal patterns in dynamic networks. Comput. Graph. Forum. 34, 31–40 (2015)CrossRefGoogle Scholar
  2. 2.
    Bach, B., Pietriga, E., Fekete, J.D.: Visualizing dynamic networks with matrix cubes. In: Proceedings of ACM Conference on Human Factors in Computing Systems, pp. 877–886 (2014)Google Scholar
  3. 3.
    Beck, F., Burch, M., Vehlow, C., Diehl, S., Weiskopf, D.: Rapid serial visual presentation in dynamic graph visualization. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 185–192 (2012)Google Scholar
  4. 4.
    Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36, 133–159 (2016)CrossRefGoogle Scholar
  5. 5.
    Becker, R.A., Eick, S.G., Wilks, A.R.: Visualizing network data. IEEE Trans. Visual. Comput. Graph. 1(1), 16–28 (1995)CrossRefGoogle Scholar
  6. 6.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)Google Scholar
  7. 7.
    Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)CrossRefGoogle Scholar
  8. 8.
    Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks. IEEE Trans. Vis. Comput. Graph. 17(12), 2283–2290 (2011).  https://doi.org/10.1109/TVCG.2011.169CrossRefGoogle Scholar
  9. 9.
    Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting for scalable dynamic graph visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2344–2353 (2011).  https://doi.org/10.1109/TVCG.2011.226CrossRefGoogle Scholar
  10. 10.
    Burch, M., Beck, F., Weiskopf, D.: Radial edge splatting for visualizing dynamic directed graphs. In: Proceedings of International Conference on Information Visualization and Applications, pp. 603–612 (2012)Google Scholar
  11. 11.
    Cai, Z., Jermaine, C.: The latent community model for detecting sybils in social networks. In: NDSS (2012)Google Scholar
  12. 12.
    Chernoff, H., Association, S., Jun, N.: The Use of Faces to Represent Points in K-Dimensional Space Graphically 68(342), 361–368 (2007)Google Scholar
  13. 13.
    Dang, T.N., Wilkinson, L.: TimeExplorer: similarity search time series by their signatures. In: Bebis, G., et al. (eds.) ISVC 2013. LNCS, vol. 8033, pp. 280–289. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41914-0_28CrossRefGoogle Scholar
  14. 14.
    Dang, T.N., Anand, A., Wilkinson, L.: TimeSeer: scagnostics for high-dimensional time series. IEEE Trans. Vis. Comput. Graph. 19(3), 470–483 (2013).  https://doi.org/10.1109/TVCG.2012.128CrossRefGoogle Scholar
  15. 15.
    Dang, T.N., Cui, H., Forbes, A.G.: MultiLayerMatrix: visualizing large taxonomic datasets. In: Andrienko, N., Sedlmair, M. (eds.) EuroVis Workshop on Visual Analytics (EuroVA). The Eurographics Association (2016).  https://doi.org/10.2312/eurova.20161125
  16. 16.
    Dang, T.N., Franz, N., Ludäscher, B., Forbes, A.G.: ProvenanceMatrix: a visualization tool for multi-taxonomy alignments. In: Proceedings of the ISWC Workshop on Visualization and User Interfaces for Ontologies and Linked Data (VOILA), vol. 1456, pp. 13–24. CEUR Workshop Proceedings (2015)Google Scholar
  17. 17.
    Dang, T.N., Murray, P., Forbes, A.G.: PathwayMatrix: visualizing binary relationships between proteins in biological pathways. BMC Proc. 9(6), S3 (2015)CrossRefGoogle Scholar
  18. 18.
    Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Networks 8(1), 148–154 (1997)CrossRefGoogle Scholar
  19. 19.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs using node-link and matrix-based representations: a controlled experiment and statistical analysis. Inf. Vis. 4(2), 114–135 (2005).  https://doi.org/10.1057/palgrave.ivs.9500092
  20. 20.
    Greilich, M., Burch, M., Diehl, S.: Visualizing the evolution of compound digraphs with TimeArcTrees. In: Proceedings of Eurographics Conference on Visualization, pp. 975–990 (2009).  https://doi.org/10.1111/j.1467-8659.2009.01451.x
  21. 21.
    Henry, N., Fekete, J.D.: MatrixExplorer: a dual-representation system to explore social networks. IEEE Trans. Vis. Comput. Graph. 12(5), 677–684 (2006).  https://doi.org/10.1109/TVCG.2006.160CrossRefGoogle Scholar
  22. 22.
    Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, pp. 857–864 (2003)Google Scholar
  23. 23.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)CrossRefGoogle Scholar
  24. 24.
    Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the 1st Conference on Visualization 1990, pp. 361–378. IEEE Computer Society Press (1990)Google Scholar
  25. 25.
    Keim, D.A.: Designing Pixel-Oriented Visualization Techniques: Theory and Applications 6(1), 59–78 (2000)Google Scholar
  26. 26.
    Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which visual representation is better for visualising connectivity models? Inf. Vis. 5(1), 62–76 (2006).  https://doi.org/10.1057/palgrave.ivs.9500116CrossRefGoogle Scholar
  27. 27.
    Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets. In: Proceedings of International Conference on Advanced Visual Interfaces, pp. 241–248 (2010).  https://doi.org/10.1145/1842993.1843035
  28. 28.
    LeBlanc, J., Ward, M.O., Wittels, N.: Exploring n-dimensional databases. In: Proceedings of the 1st Conference on Visualization 1990, pp. 230–237. IEEE Computer Society Press (1990)Google Scholar
  29. 29.
    Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: StoryFlow: tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013).  https://doi.org/10.1109/TVCG.2013.196CrossRefGoogle Scholar
  30. 30.
    Ma, C., Kenyon, R.V., Forbes, A.G., Berger-Wolf, T., Slater, B.J., Llano, D.A.: Visualizing dynamic brain networks using an animated dual-representation. In: Proceedings of Eurographics Conference on Visualization, pp. 73–77 (2015)Google Scholar
  31. 31.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).  https://doi.org/10.1103/PhysRevE.69.026113CrossRefGoogle Scholar
  32. 32.
    Nguyen, M., Purushotham, S., To, H., Shahabi, C., Angeles, L.: m-TSNE : A Framework for Visualizing High-Dimensional Multivariate Time Series (2017)Google Scholar
  33. 33.
    Rauber, P.E., Falcão, A.X., Telea, A.C.: Visualizing time-dependent data using dynamic t-SNE. In: Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, EuroVis 2016, Eurographics Association, Goslar Germany, pp. 73–77 (2016).  https://doi.org/10.2312/eurovisshort.20161164
  34. 34.
    Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.: Visualizing the evolution of community structures in dynamic social networks. In: Proceedings of Eurographics Conference on Visualization, pp. 1061–1070 (2011)Google Scholar
  35. 35.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  36. 36.
    Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 100(5), 401–409 (1969)CrossRefGoogle Scholar
  37. 37.
    Shneiderman, B.: Tree Visualization with Tree-Maps : 2-d Space-Filling Approach 11(1), 92–99 (1992)Google Scholar
  38. 38.
    Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012).  https://doi.org/10.1109/TVCG.2012.212CrossRefGoogle Scholar
  39. 39.
    Tantipathananandh, C., Berger-Wolf, T.Y.: Finding communities in dynamic social networks. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1236–1241, December 2011.  https://doi.org/10.1109/ICDM.2011.67
  40. 40.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  41. 41.
    Torgerson, W.S.: Multidimensional scaling: I. theory and method. Psychometrika 17(4), 401–419 (1952)Google Scholar
  42. 42.
    Van Der Maaten, L., Hinton, G.: Visualizing Data using t-SNE 9, 2579–2605 (2008)Google Scholar
  43. 43.
    Van der Walt, S., Smith, N.: mpl colormaps (2015). http://bids.github.io/colormap
  44. 44.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications. A. K. Peters, Ltd., Natick (2010)CrossRefGoogle Scholar
  45. 45.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, New York (1994).  https://doi.org/10.1017/CBO9780511815478
  46. 46.
    Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proceedings of The Twenty-first International Conference on Machine Learning, p. 106. ACM (2004)Google Scholar
  47. 47.
    Yang, K., Shahabi, C.: A PCA-based similarity measure for multivariate time series. In: Proceedings of the 2nd ACM International Workshop on Multimedia Databases, pp. 65–74. ACM (2004)Google Scholar
  48. 48.
    Yi, J.S., Elmqvist, N., Seungyoon, L.: TimeMatrix: analyzing temporal social networks using interactive matrix-based visualizations. Int. J. Hum. Comput. Int. 26(11–12), 1031–1051 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations