Accurate Computation of Interval Volume Measures for Improving Histograms

  • Cuilan WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11844)


The interval volume measure is defined as the volume of the space occupied by a range of isosurfaces corresponding to an interval of isovalues. The interval volume measures are very useful since they can be taken as an alternative way of producing a smooth noise-suppressing histogram. This paper proposes two new methods (i.e., the subdividing method and the slicing method) that can calculate interval volume measures with very high accuracy for scalar regular-grid volumetric datasets. It is assumed that the underlying function inside the grid cell is defined by trilinear interpolation. A refined histogram method that can produce accurate interval volume measures is also presented in the paper. All three methods are compared against one another in terms of accuracy and performance. Their improvement for computing global and local histograms is demonstrated by comparing against the previous methods.


Isosurface Interval volume Histogram Trilinear interpolation Marching Cubes 


  1. 1.
    Roettger’s volume library. Accessed June 2018
  2. 2.
    Chaudhuri, A., et al.: Scalable computation of distributions from large scale data sets. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 113–120 (2012)Google Scholar
  3. 3.
    Duffy, B., Carr, H., Möller, T.: Integrating isosurface statistics and histograms. IEEE Trans. Vis. Comput. Graph. 19(2), 263–277 (2013)CrossRefGoogle Scholar
  4. 4.
    Fujishiro, I., Maeda, Y., Sato, H.: Interval volume: a solid fitting technique for volumetric data display and analysis. In: Proceedings of Visualization 1995, Atlanta, USA, pp. 151–158 (1995)Google Scholar
  5. 5.
    Gu, Y., Wang, C.: Transgraph: hierarchical exploration of transition relationships in time-varying volumetric data. IEEE Trans. Vis. Comput. Graph. 17, 2015–2024 (2011)CrossRefGoogle Scholar
  6. 6.
    Guo, B.: Interval set: a volume rendering technique generalizing isosurface extraction. In: Proceedings of Visualization 1995, Atlanta, USA, pp. 3–10 (1995)Google Scholar
  7. 7.
    Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets. In: Proceedings Visualization, 2001. VIS 2001, pp. 255–562 (2001)Google Scholar
  8. 8.
    Lundström, C., Ljung, P., Ynnerman, A.: Local histograms for design of transfer functions in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 12(6), 1570–1579 (2006)CrossRefGoogle Scholar
  9. 9.
    Morgan, F.: Geometric Measure Theory: A Beginner’s Guide. Academic Press, Boston (2016)CrossRefGoogle Scholar
  10. 10.
    Pekar, V., Wiemker, R., Bystrov, D.: Fast detection of meaningful isosurfaces for volume data visualization. In: Proceedings Visualization, 2001. VIS 2001, pp. 223–230 (2001)Google Scholar
  11. 11.
    Scheidegger, C., Schreiner, J., Duffy, B., Carr, H., Silva, C.: Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 14(6), 1659–1666 (2008)CrossRefGoogle Scholar
  12. 12.
    Tenginakai, S., Lee, J., Machiraju, R.: Salient iso-surface detection with model-independent statistical signatures. In: Proceedings Visualization, 2001. VIS 2001, pp. 231–238 (2001)Google Scholar
  13. 13.
    Thompson, D., et al.: Analysis of large-scale scalar data using hixels. In: 2011 IEEE Symposium on Large Data Analysis and Visualization, pp. 23–30 (2011)Google Scholar
  14. 14.
    Wang, C., Lai, S.: Adaptive isosurface reconstruction using a volumetric-divergence-based metric. In: Bebis, G., et al. (eds.) ISVC 2016. LNCS, vol. 10072, pp. 367–378. Springer, Cham (2016). Scholar
  15. 15.
    Wang, C., Newman, T., Lee, J.: On accuracy of marching isosurfacing methods. In: Proceedings of the Eurographics/IEEE VGTC Workshop on Volume Graphics 2008, Los Angeles, pp. 49–56 (2008)Google Scholar
  16. 16.
    Wang, C.: A fast method to calculate the volumetric divergence metric for evaluating the accuracy of the extracted isosurface. Proc. ACM Comput. Graph. Interact. Techn. 1(2), 27:1–27:19 (2018)Google Scholar
  17. 17.
    Wenger, R.: Isosurfaces: Geometry, Topology, and Algorithms. CRC Press, Hoboken (2013)CrossRefGoogle Scholar
  18. 18.
    Zhou, B., Chiang, Y.J., Wang, C.: Efficient local statistical analysis via point-wise histograms in tetrahedral meshes and curvilinear grids. IEEE Trans. Vis. Comput. Graph. 25, 1392–1406 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleUSA

Personalised recommendations