Mutual Information-Based Texture Spectral Similarity Criterion

  • Michal HaindlEmail author
  • Michal Havlíček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11844)


Fast novel texture spectral similarity criterion, capable of assessing spectral modeling resemblance of color and Bidirectional Texture Functions (BTF) textures, is presented. The criterion reliably compares the multi-spectral pixel values of two textures, and thus it allows to assist an optimal modeling or acquisition setup development by comparing the original data with its synthetic simulations. The suggested criterion, together with existing alternatives, is extensively tested in a long series of thousands specially designed monotonically degrading experiments moreover, successfully compared on a wide variety of color and BTF textures.



The Czech Science Foundation project GAČR 19-12340S supported this research.


  1. 1.
    Cuturi, M., Peyré, G.: A smoothed dual approach for variational wasserstein problems. SIAM J. Imaging Sci. 9(1), 320–343 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dana, K.J., Nayar, S.K., van Ginneken, B., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: CVPR, pp. 151–157. IEEE Computer Society (1997)Google Scholar
  3. 3.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  4. 4.
    Galloway, M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975)CrossRefGoogle Scholar
  5. 5.
    Haindl, M., Kudělka, M.: Texture fidelity benchmark. In: 2014 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5. IEEE Computer Society CPS, Los Alamitos, November 2014.,
  6. 6.
    Haindl, M., Mikeš, S.: Unsupervised texture segmentation using multispectral modelling approach. In: Tang, Y., Wang, S., Yeung, D., Yan, H., Lorette, G. (eds.) Proceedings of the 18th International Conference on Pattern Recognition, ICPR 2006. vol. II, pp. 203–206. IEEE Computer Society, Los Alamitos, August 2006.
  7. 7.
    Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern Recognition. Springer, London (2012). Scholar
  8. 8.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)CrossRefGoogle Scholar
  9. 9.
    Havlíček, M., Haindl, M.: Texture spectral similarity criteria. IET Image Process. 13 (2019).
  10. 10.
    Howarth, P., Rüger, S.: Fractional distance measures for content-based image retrieval. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 447–456. Springer, Heidelberg (2005). Scholar
  11. 11.
    Jaccard, P.: Etude comparative de la distribution florale dans une portion des Alpes et du Jura. Impr. Corbaz (1901)Google Scholar
  12. 12.
    Kokare, M., Chatterji, B., Biswas, P.: Comparison of similarity metrics for texture image retrieval. In: TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region, vol. 2, pp. 571–575. IEEE (2003)Google Scholar
  13. 13.
    Kudělka, M., Haindl, M.: Texture fidelity criterion. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2062–2066. IEEE, September 2016.,
  14. 14.
    Laws, K.: Rapid texture identification. In: Proceedings of SPIE Conference on Image Processing for Missile Guidance, pp. 376–380 (1980)Google Scholar
  15. 15.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996). Scholar
  16. 16.
    Mindru, F., Moons, T., Van Gool, L.: Color-based moment invariants for viewpoint and illumination independent recognition of planar color patterns. In: Singh, S. (ed.) International Conference on Advances in Pattern Recognition, pp. 113–122. Springer, London (1998). Scholar
  17. 17.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell 24(7), 971–987 (2002)CrossRefGoogle Scholar
  18. 18.
    Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 267–272. IEEE (1997)Google Scholar
  19. 19.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000). Scholar
  20. 20.
    Sattler, M., Sarlette, R., Klein, R.: Efficient and realistic visualization of cloth. In: Eurographics Symposium on Rendering 2003, June 2003Google Scholar
  21. 21.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)CrossRefGoogle Scholar
  22. 22.
    Viethen, J., van Vessem, T., Goudbeek, M., Krahmer, E.: Color in reference production: the role of color similarity and color codability. Cogn. Sci. 41, 1493–1514 (2017)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). Scholar
  24. 24.
    Wang, Z., Simoncelli, E.P.: Translation insensitive image similarity in complex wavelet domain. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP 05), pp. 573–576 (2005)Google Scholar
  25. 25.
    Yuan, J., Wang, D., Cheriyadat, A.M.: Factorization-based texture segmentation. IEEE Trans. Image Process. 24(11), 3488–3497 (2015). Scholar
  26. 26.
    Zhang, D., Lu, G.: Evaluation of similarity measurement for image retrieval. In: Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, 2003, vol. 2, pp. 928–931. IEEE (2003)Google Scholar
  27. 27.
    Zujovic, J., Pappas, T., Neuhoff, D.: Structural texture similarity metrics for image analysis and retrieval. IEEE Trans. Image Process. 22(7), 2545–2558 (2013). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.The Institute of Information Theory and Automation of the Czech Academy of SciencesPragueCzechia

Personalised recommendations