A Granular Approach to Source Trustworthiness for Negative Trust Assessment

  • Davide CeolinEmail author
  • Giuseppe Primiero
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 563)


The problem of determining what information to trust is crucial in many contexts that admit uncertainty and polarization. In this paper, we propose a method to systematically reason on the trustworthiness of sources. While not aiming at establishing their veracity, the method allows creating a relative reference system to determine the trustworthiness of information sources by reasoning on their knowledgeability, popularity, and reputation. We further propose a formal rule-based set of strategies to establish possibly negative trust on contradictory contents that use such source evaluation. The strategies answer to criteria of higher trustworthiness score, majority or consensus on the set of sources. We evaluate our model through a real-case scenario.


  1. 1.
    Abdul-Rahman, A.: A framework for decentralised trust reasoning. Ph.D. thesis, Department of Computer Science, University College London (2005)Google Scholar
  2. 2.
    Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: NSPW, pp. 48–60 (1997)Google Scholar
  3. 3.
    American Library Association: Evaluating information: a basic checklist (1994)Google Scholar
  4. 4.
    Bessi, A., Coletto, M., Davidescu, G., Scala, A., Caldarelli, G., Quattrociocchi, W.: Science vs conspiracy: collective narratives in the age of misinformation. PLoS One 2, e0118093 (2015)CrossRefGoogle Scholar
  5. 5.
    Boender, J., Primiero, G., Raimondi, F.: Minimizing transitive trust threats in software management systems. In: PST, pp. 191–198. IEEE (2015)Google Scholar
  6. 6.
    Ceolin, D., Noordegraaf, J., Aroyo, L.: Capturing the ineffable: collecting, analysing, and automating web document quality assessments. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 83–97. Springer, Cham (2016). Scholar
  7. 7.
    Ceolin, D., Noordegraaf, J., Aroyo, L., van Son, C.: Towards web documents quality assessment for digital humanities scholars. WebSci 2016, 315–317 (2016)CrossRefGoogle Scholar
  8. 8.
    Chakraborty, P.S., Karform, S.: Designing trust propagation algorithms based on simple multiplicative strategy for social networks. Procedia Technol. 6, 534–539 (2012). iCCCS-2012CrossRefGoogle Scholar
  9. 9.
    Chapin, P.C., Skalka, C., Wang, X.S.: Authorization in trust management: features and foundations. ACM Comput. Surv. 40(3), 9 (2008)CrossRefGoogle Scholar
  10. 10.
    Christianson, B., Harbison, W.S.: Why isn’t trust transitive? In: Lomas, M. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 171–176. Springer, Heidelberg (1997). Scholar
  11. 11.
    Clarke, S., Christianson, B., Xiao, H.: Trust*: using local guarantees to extend the reach of trust. In: Christianson, B., Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol. 7028, pp. 171–178. Springer, Heidelberg (2013). Scholar
  12. 12.
    Floridi, L., Illari, P. (eds.): The Philosophy of Information Quality. Springer, Cham (2014). Scholar
  13. 13.
    Illari, P.: IQ: purpose and dimensions. In: Floridi, L., Illari, P. (eds.) The Philosophy of Information Quality. SL, vol. 358, pp. 281–301. Springer, Cham (2014). Scholar
  14. 14.
    Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: RecSys, pp. 135–142. ACM (2010)Google Scholar
  15. 15.
    Jøsang, A.: Subjective Logic - A Formalism for Reasoning Under Uncertainty. Springer, Cham (2016). Scholar
  16. 16.
    Jøsang, A., Marsh, S., Pope, S.: Exploring different types of trust propagation. In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 179–192. Springer, Heidelberg (2006). Scholar
  17. 17.
    Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information quality assessment. Inf. Manag. 40(2), 133–146 (2002)CrossRefGoogle Scholar
  18. 18.
    Marsh, S., Dibben, M.R.: Trust, untrust, distrust and mistrust – an exploration of the dark(er) side. In: Herrmann, P., Issarny, V., Shiu, S. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 17–33. Springer, Heidelberg (2005). Scholar
  19. 19.
    Parsons, S., Tang, Y., Sklar, E., McBurney, P., Cai, K.: Argumentation-based reasoning in agents with varying degrees of trust. In: AAMAS, pp. 879–886 (2011)Google Scholar
  20. 20.
    Primiero, G.: A calculus for distrust and mistrust. In: Habib, S.M.M., Vassileva, J., Mauw, S., Mühlhäuser, M. (eds.) IFIPTM 2016. IAICT, vol. 473, pp. 183–190. Springer, Cham (2016). Scholar
  21. 21.
    Primiero, G., Boender, J.: Managing software uninstall with negative trust. In: Steghöfer, J.-P., Esfandiari, B. (eds.) IFIPTM 2017. IAICT, vol. 505, pp. 79–93. Springer, Cham (2017). Scholar
  22. 22.
    Primiero, G., Boender, J.: Negative trust for conflict resolution in software management. Web Intell. 16(4), 251–271 (2018)CrossRefGoogle Scholar
  23. 23.
    Primiero, G., Raimondi, F.: A typed natural deduction calculus to reason about secure trust. In: PST, pp. 379–382. IEEE (2014)Google Scholar
  24. 24.
    Primiero, G., Raimondi, F., Bottone, M., Tagliabue, J.: Trust and distrust in contradictory information transmission. Appl. Netw. Sci. 2, 12 (2017)CrossRefGoogle Scholar
  25. 25.
    Zhang, A.X., et al.: A structured response to misinformation: defining and annotating credibility indicators in news articles. In: WWW 18 Companion (2018)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Department of PhilosophyUniversity of MilanMilanItaly

Personalised recommendations