On Trust Confusional, Trust Ignorant, and Trust Transitions

  • Yoshinobu KawabeEmail author
  • Yuki Koizumi
  • Tetsushi Ohki
  • Masakatsu Nishigaki
  • Toru Hasegawa
  • Tetsuhisa Oda
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 563)


This paper introduces a two-dimensional representation for trust values that uses two metrics: “trust” and “distrust.” With this representation, we can deal with such contradictory arguments as “The message is basically trustworthy but simultaneously not trustworthy.” Such situations can be caused when a message is consistent with other messages, but the message is sent from an unknown sender. We also explore how to analyze the transitions of two-dimensional trust values with a theory of distributed algorithms and compare our trust representation with Jøsang’s subjective logic.


Two-dimensional trust representation Fuzzy logic I/O-automaton theory Safety/liveness properties Subjective logic 



This work was supported by the National Institute of Information and Communications Technology in Japan (Contract No. 193).


  1. 1.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications, 1st edn. Physica-Verlag GmbH, Heidelberg (2010)zbMATHGoogle Scholar
  2. 2.
    Bogdanov, A.: Formal verification of simulations between I/O-automata. Master’s thesis, Massachusetts Institute of Technology (2000)Google Scholar
  3. 3.
    Busa, M. G., Musacchio, M.T., Finan, S., Fennell, C.: Trust-building through social media communications in disaster management. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1179–1184. WWW 2015 Companion. ACM, New York (2015).
  4. 4.
    Chen, J., Arumaithurai, M., Fu, X., Ramakrishnan, K. K.: CNS: content-oriented notification service for managing disasters. In: Proceedings of ACM Conference on Information-Centric Networking, pp. 122–131. ACM (2016)Google Scholar
  5. 5.
    Deng, J., Oda, T., Umano, M.: Fuzzy logical operations in the two-dimensional hyper logic space concerning the fuzzy-set concurrent rating method. J. Jpn. Assoc. Manage. Syst. 17(2), 33–42 (2001)Google Scholar
  6. 6.
    Jahanian, M., Xing, Y., Chen, J., Ramakrishnan, K.K., Seferoglu, H., Yuksel, M.: The evolving nature of disaster management in the internet and social media era. In: 2018 IEEE International Symposium on Local and Metropolitan Area Networks, LANMAN 2018, Washington, DC, USA, June 25–27, 2018, pp. 79–84 (2018).
  7. 7.
    Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty, 1st edn. Springer, Cham (2016). Scholar
  8. 8.
    Kaynar, D., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Morgan & Claypool Publishers, San Francisco (2010)zbMATHGoogle Scholar
  9. 9.
    Lemieux, F.: The impact of a natural disaster on altruistic behaviour and crime. Disasters 38(3), 483–499 (2014)CrossRefGoogle Scholar
  10. 10.
    Lewicki, R.J., McAllister, D.J.B., Bies, R.J.: Trust and distrust: new relationships and realities. Acad. Manag. Rev. 23, 438–458 (1998)CrossRefGoogle Scholar
  11. 11.
    Lynch, N., Vaandrager, F.: Forward and backward simulations – part I: untimed systems. Inf. Comput. 121(2), 214–233 (1995). Scholar
  12. 12.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco (1996)zbMATHGoogle Scholar
  13. 13.
    Marsh, S., Dibben, M.R.: Trust, untrust, distrust and mistrust – an exploration of the Dark(er) side. In: Herrmann, P., Issarny, V., Shiu, S. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 17–33. Springer, Heidelberg (2005). Scholar
  14. 14.
    Meyerson, D., Weick, K.E., Kramer, R.M.: Swift Trust and Temporary Groups in Trust in Organizations: Frontiers of Theory and Research. SAGE, Thousand Oaks (1995)Google Scholar
  15. 15.
    Murayama, Y.: Issues in disaster communications. J. Inf. Process. 22(4), 558–565 (2014). Scholar
  16. 16.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986). Scholar
  17. 17.
    Oda, T.: Fundamental characterestics of fuzzy-set concurrent rating method. J. Jpn. Assoc. Manage. Syst. 12(1), 23–32 (1995). In JapaneseGoogle Scholar
  18. 18.
    Oda, T.: Fuzzy set theoretical approach for improving the rating scale method: proposing and introducing the FCR-method and the IR-method as novel rating methods. Jpn. Psychol. Rev. 56(1), 67–83 (2013). In JapaneseGoogle Scholar
  19. 19.
    Oda, T.: Measurement technique for ergonomics, section 3: psychological measurements and analyses (3) measurements and analyses by kansei evaluation. Jpn. J. Ergon. 51(5), 293–303 (2015). In JapaneseGoogle Scholar
  20. 20.
    Primiero, G.: A calculus for distrust and mistrust. In: Habib, S.M.M., Vassileva, J., Mauw, S., Mühlhäuser, M. (eds.) IFIPTM 2016. IAICT, vol. 473, pp. 183–190. Springer, Cham (2016). Scholar
  21. 21.
    Primiero, G., Raimondi, F., Bottone, M., Tagliabue, J.: Trust and distrust in contradictory information transmission. Appl. Network Sci. 2, 12 (2017). Scholar
  22. 22.
    Søgaard-Andersen, J.F., Garland, S.J., Guttag, J.V., Lynch, N.A., Pogosyants, A.: Computer-assisted simulation proofs. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 305–319. Springer, Heidelberg (1993). Scholar
  23. 23.
    Wildman, J., Shuffler, M., Lazzara, E., Fiore, S., Burke, S.: Trust development in swift starting action teams: a multilevel framework. Group Organ. Manage. 37(2), 137–170 (2012)CrossRefGoogle Scholar
  24. 24.

Copyright information

© IFIP International Federation for Information Processing 2019

Authors and Affiliations

  • Yoshinobu Kawabe
    • 1
    Email author
  • Yuki Koizumi
    • 2
  • Tetsushi Ohki
    • 3
  • Masakatsu Nishigaki
    • 3
  • Toru Hasegawa
    • 2
  • Tetsuhisa Oda
    • 1
  1. 1.Graduate School of Business Administration and Computer ScienceAichi Institute of TechnologyToyotaJapan
  2. 2.Graduate School of Information Science and TechnologyOsaka UniversitySuita, OsakaJapan
  3. 3.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan

Personalised recommendations