Advertisement

Edge User Allocation with Dynamic Quality of Service

  • Phu Lai
  • Qiang HeEmail author
  • Guangming Cui
  • Xiaoyu Xia
  • Mohamed Abdelrazek
  • Feifei Chen
  • John Hosking
  • John Grundy
  • Yun Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11895)

Abstract

In edge computing, edge servers are placed in close proximity to end-users. App vendors can deploy their services on edge servers to reduce network latency experienced by their app users. The edge user allocation (EUA) problem challenges service providers with the objective to maximize the number of allocated app users with hired computing resources on edge servers while ensuring their fixed quality of service (QoS), e.g., the amount of computing resources allocated to an app user. In this paper, we take a step forward to consider dynamic QoS levels for app users, which generalizes but further complicates the EUA problem, turning it into a dynamic QoS EUA problem. This enables flexible levels of quality of experience (QoE) for app users. We propose an optimal approach for finding a solution that maximizes app users’ overall QoE. We also propose a heuristic approach for quickly finding sub-optimal solutions to large-scale instances of the dynamic QoS EUA problem. Experiments are conducted on a real-world dataset to demonstrate the effectiveness and efficiency of our approaches against a baseline approach and the state of the art.

Keywords

Resource allocation Edge computing Quality of Service Quality of Experience User allocation 

Notes

Acknowledgments

This research is funded by Australian Research Council Discovery Projects (DP170101932 and DP18010021).

References

  1. 1.
    Aazam, M., St-Hilaire, M., Lung, C.H., Lambadaris, I.: Mefore: QoE based resource estimation at fog to enhance QoS in IoT. In: 2016 23rd International Conference on Telecommunications (ICT), pp. 1–5. IEEE (2016)Google Scholar
  2. 2.
    Alreshoodi, M., Woods, J.: Survey on QoE\(\backslash \)QoS correlation models for multimedia services. arXiv preprint arXiv:1306.0221 (2013)
  3. 3.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. ACM (2012)Google Scholar
  4. 4.
    Cerwall, P., et al.: Ericsson Mobility Report. Ericsson, Stockholm (2018). https://www.ericsson.com/en/mobility-report/reports/november-2018
  5. 5.
    Chen, M., Zhang, Y., Li, Y., Mao, S., Leung, V.C.: EMC: emotion-aware mobile cloud computing in 5G. IEEE Netw. 29(2), 32–38 (2015)CrossRefGoogle Scholar
  6. 6.
    Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)CrossRefGoogle Scholar
  7. 7.
    Ding, B., Chen, L., Chen, D., Yuan, H.: Application of RTLS in warehouse management based on RFID and wi-fi. In: 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1–5. IEEE (2008)Google Scholar
  8. 8.
    Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Netw. 24(2), 36–41 (2010)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. wh freeman, New York (2002)Google Scholar
  10. 10.
    Hande, P., Zhang, S., Chiang, M.: Distributed rate allocation for inelastic flows. IEEE/ACM Trans. Netw. (TON) 15(6), 1240–1253 (2007)CrossRefGoogle Scholar
  11. 11.
    He, J., Wen, Y., Huang, J., Wu, D.: On the cost-QoE tradeoff for cloud-based video streaming under Amazon EC2’s pricing models. IEEE Trans. Circuits Syst. Video Technol. 24(4), 669–680 (2013)Google Scholar
  12. 12.
    Hemmati, M., McCormick, B., Shirmohammadi, S.: QoE-aware bandwidth allocation for video traffic using sigmoidal programming. IEEE MultiMedia 24(4), 80–90 (2017)CrossRefGoogle Scholar
  13. 13.
    Hobfeld, T., Schatz, R., Varela, M., Timmerer, C.: Challenges of QoE management for cloud applications. IEEE Commun. Mag. 50(4), 28–36 (2012)CrossRefGoogle Scholar
  14. 14.
    Hong, S.T., Kim, H.: QoE-aware computation offloading scheduling to capture energy-latency tradeoff in mobile clouds. In: 2016 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pp. 1–9. IEEE (2016)Google Scholar
  15. 15.
    Hoßfeld, T., Seufert, M., Hirth, M., Zinner, T., Tran-Gia, P., Schatz, R.: Quantification of YouTube QoE via crowdsourcing. In: 2011 IEEE International Symposium on Multimedia, pp. 494–499. IEEE (2011)Google Scholar
  16. 16.
    Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing–a key technology towards 5G. ETSI White Pap. 11(11), 1–16 (2015)Google Scholar
  17. 17.
    Lachat, A., Gicquel, J.C., Fournier, J.: How perception of ultra-high definition is modified by viewing distance and screen size. In: Image Quality and System Performance XII, vol. 9396, p. 93960Y. International Society for Optics and Photonics (2015)Google Scholar
  18. 18.
    Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_15CrossRefGoogle Scholar
  19. 19.
    Mahmud, R., Srirama, S.N., Ramamohanarao, K., Buyya, R.: Quality of experience(QoE)-aware placement of applications in fog computing environments. J. Parallel Distrib. Comput. (2018) Google Scholar
  20. 20.
    Shenker, S.: Fundamental design issues for the future internet. IEEE J. Sel. Areas Commun. 13(7), 1176–1188 (1995)CrossRefGoogle Scholar
  21. 21.
    Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., Heinzelman, W.: Cloud-vision: real-time face recognition using a mobile-cloudlet-cloud acceleration architecture. In: 2012 IEEE Symposium on Computers and Communications (ISCC), pp. 59–66. IEEE (2012)Google Scholar
  22. 22.
    Su, Z., Xu, Q., Fei, M., Dong, M.: Game theoretic resource allocation in media cloud with mobile social users. IEEE Trans. Multimedia 18(8), 1650–1660 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Phu Lai
    • 1
  • Qiang He
    • 1
    Email author
  • Guangming Cui
    • 1
  • Xiaoyu Xia
    • 2
  • Mohamed Abdelrazek
    • 2
  • Feifei Chen
    • 2
  • John Hosking
    • 4
  • John Grundy
    • 3
  • Yun Yang
    • 1
  1. 1.Swinburne University of TechnologyHawthornAustralia
  2. 2.Deakin UniversityBurwoodAustralia
  3. 3.Monash UniversityClaytonAustralia
  4. 4.The University of AucklandAucklandNew Zealand

Personalised recommendations