Advertisement

Graph-Based Optimal Data Caching in Edge Computing

  • Xiaoyu Xia
  • Feifei Chen
  • Qiang HeEmail author
  • Guangming Cui
  • Phu Lai
  • Mohamed Abdelrazek
  • John Grundy
  • Hai Jin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11895)

Abstract

In an edge computing environment, edge servers are deployed at base stations to offer highly accessible computing capacities and services to nearby users. Data caching is thus extremely important in edge computing environments to reduce service latency. The optimal data caching strategy in the edge computing environment will minimize the data caching cost while maximizing the reduction in service latency. In this paper, we formulate this edge data caching (EDC) problem as a constrained optimization problem (COP), prove that the EDC problem is \(\mathcal {NP}\)-complete, propose an optimal approach named IPEDC to solve the EDC problem using the Integer Programming technique, and provide a heuristic algorithm named LGEDC to find near-optimal solutions. We have evaluated our approaches on a real-world data set and a synthesized data set. The results demonstrate that IPEDC and LGEDC significantly outperform two representative baseline approaches.

Keywords

Optimization Edge computing Data caching 

Notes

Acknowledgement

This research is partially funded by Australian Research Council Discovery Projects (No. DP170101932 and DP180100212).

References

  1. 1.
    Osseiran, A., et al.: The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions. In: IEEE 77th Vehicular Technology Conference (VTC2013-Spring), pp. 1–5 (2013)Google Scholar
  2. 2.
    Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_15CrossRefGoogle Scholar
  3. 3.
    Tran, T.X., Hosseini, M.-P., Pompili, D.: Mobile edge computing: recent efforts and five key research directions. IEEE COMSOC MMTC Commun. Front. 12(4), 29–33 (2017)Google Scholar
  4. 4.
    M. ETSI.: Mobile edge computing - introductory technical white paper (2014)Google Scholar
  5. 5.
    Cisco visual networking index: global mobile data traffic forecast update, 2017–2022 (2019). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
  6. 6.
    Chen, L., Zhou, S., Xu, J.: Computation peer offloading for energy-constrained mobile edge computing in small-cell networks. IEEE/ACM Trans. Netw. 26(4), 1619–1632 (2018)CrossRefGoogle Scholar
  7. 7.
    Tatar, A., De Amorim, M.D., Fdida, S., Antoniadis, P.: A survey on predicting the popularity of web content. J. Internet Serv. Appl. 5(1), 1–20 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, M., Hao, Y., Lin, K., Yuan, Z., Hu, L.: Label-less learning for traffic control in an edge network. IEEE Netw. 32(6), 8–14 (2018)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on mobile edge networks: convergence of computing, caching and communications. IEEE Access 5, 6757–6779 (2017)CrossRefGoogle Scholar
  10. 10.
    Lin, M., Lucas Jr., H.C., Shmueli, G.: Research commentary-too big to fail: large samples and the p-value problem. Inf. Syst. Res. 24(4), 906–917 (2013)CrossRefGoogle Scholar
  11. 11.
    Yannuzzi, M., et al.: A new era for cities with fog computing. IEEE Internet Comput. 21(2), 54–67 (2017)CrossRefGoogle Scholar
  12. 12.
    Wang, F., Xu, J., Wang, X., Cui, S.: Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans. Wirel. Commun. 17(3), 1784–1797 (2018)CrossRefGoogle Scholar
  13. 13.
    Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.: Heterogeneous cloudlet deployment and user-cloudlet association toward cost effective fog computing. Concurr. Comput. Pract. Exp. 29(16), e3975 (2017)CrossRefGoogle Scholar
  14. 14.
    Cao, X., Zhang, J., Poor, H.V.: An optimal auction mechanism for mobile edge caching. In: 38th IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 388–399 (2018)Google Scholar
  15. 15.
    Halalai, R., Felber, P., Kermarrec, A.-M., Taïani, F.: Agar: a caching system for erasure-coded data. In: 37th IEEE International Conference onDistributed Computing Systems (ICDCS), pp. 23–33 (2017)Google Scholar
  16. 16.
    Drolia, U., Guo, K., Tan, J., Gandhi, R., Narasimhan, P.: Cachier: edge-caching for recognition applications. In: 37th IEEE International Conference onDistributed Computing Systems (ICDCS), pp. 276–286 (2017)Google Scholar
  17. 17.
    Zhang, X., Zhu, Q.: Hierarchical caching for statistical qos guaranteed multimedia transmissions over 5G edge computing mobile wireless networks. IEEE Wirel. Commun. 25(3), 12–20 (2018)CrossRefGoogle Scholar
  18. 18.
    Zhang, K., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Cooperative content caching in 5g networks with mobile edge computing. IEEE Wirel. Commun. 25(3), 80–87 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiaoyu Xia
    • 1
  • Feifei Chen
    • 1
  • Qiang He
    • 2
    Email author
  • Guangming Cui
    • 2
  • Phu Lai
    • 2
  • Mohamed Abdelrazek
    • 1
  • John Grundy
    • 3
  • Hai Jin
    • 4
  1. 1.Deakin UniversityBurwoodAustralia
  2. 2.Swinburne University of TechnologyHawthornAustralia
  3. 3.Monash UniversityClaytonAustralia
  4. 4.Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations