Advertisement

Harmonia: A Continuous Service Monitoring Framework Using DevOps and Service Mesh in a Complementary Manner

  • Haan JohngEmail author
  • Anup K. Kalia
  • Jin Xiao
  • Maja Vuković
  • Lawrence Chung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11895)

Abstract

Software teams today are required to deliver new or updated services frequently, rapidly and independently. Adopting DevOps and Microservices support the rapid service delivery model but leads to pushing code or service infrastructure changes across inter-dependent teams that are not collectively assessed, verified, or notified. In this paper, we propose Harmonia - a continuous service monitoring framework utilizing DevOps and Service Mesh in a complementary manner to improve coordination and change management among independent teams. Harmonia can automatically detect changes in services, including changes that violate performance SLAs and user experience, notify the changes to affected teams, and help them resolve the changes quickly. We applied Harmonia to a standard application in describing Microservice management to assist with an initial understanding and strengths of Harmonia. During the demonstration, we deployed faulty and normal services alternatively and captured changes from Jenkins, Github, Istio, and Kubernetes logs to form an application-centric cohesive view of the change and its impact and notify the affected teams.

Keywords

DevOps Service Mesh Microservice Monitoring Enterprise Cloud Management 

References

  1. 1.
    Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)CrossRefGoogle Scholar
  2. 2.
    Brunnert, A., et al.: Performance-oriented DevOps: a research agenda. CoRR abs/1508.04752 (2015). http://arxiv.org/abs/1508.04752
  3. 3.
    Chen, P., Qi, Y., Hou, D.: CauseInfer: automated end-to-end performance diagnosis with hierarchical causality graph in cloud environment. IEEE Trans. Serv. Comput. 12(2), 214–230 (2019)CrossRefGoogle Scholar
  4. 4.
    Fadda, E., Plebani, P., Vitali, M.: Monitoring-aware optimal deployment for applications based on microservices. Trans. Serv. Comput. 1–1 (2019)Google Scholar
  5. 5.
    Fitzgerald, B., Stol, K.J.: Continuous software engineering and beyond: trends and challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering, pp. 1–9. ACM, Hyderabad (2014)Google Scholar
  6. 6.
    Forsgren, N., Kim, G., Kersten, N., Humble, J., Brown, A.: 2017 state of devops report. Puppet+ DORAGoogle Scholar
  7. 7.
    Gupta, M., Mandal, A., Dasgupta, G., Serebrenik, A.: Runtime monitoring in continuous deployment by differencing execution behavior model. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 812–827. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_58CrossRefGoogle Scholar
  8. 8.
    Haselböck, S., Weinreich, R.: Decision guidance models for microservice monitoring. In: Proceedings of the International Conference on Software Architecture Workshops (ICSAW), pp. 54–61. IEEE (2017)Google Scholar
  9. 9.
    Heinrich, R., et al.: Performance engineering for microservices: research challenges and directions. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, pp. 223–226. ACM, L’Aquila (2017)Google Scholar
  10. 10.
    Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause analysis for cloud-hosted web applications. In: Proceedings of the 26th International Conference on World Wide Web, pp. 469–478. International World Wide Web Conferences Steering Committee, Perth (2017)Google Scholar
  11. 11.
    Johng, H., Kim, D., Hill, T., Chung, L.: Estimating the performance of cloud-based systems using benchmarking and simulation in a complementary manner. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 576–591. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_42CrossRefGoogle Scholar
  12. 12.
    Johng, H., Kim, D., Hill, T., Chung, L.: Using blockchain to enhance the trustworthiness of business processes: a goal-oriented approach. In: 2018 IEEE International Conference on Services Computing (SCC), pp. 249–252. IEEE (2018)Google Scholar
  13. 13.
    Kalia, A.K., Xiao, J., Bulut, M.F., Vukovic, M., Anerousis, N.: Cataloger: catalog recommendation service for IT change requests. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 545–560. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69035-3_40CrossRefGoogle Scholar
  14. 14.
    Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented architecture. In: Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems, pp. 93–104. ACM, Pittsburgh (2013)Google Scholar
  15. 15.
    Len Bass, I.W., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-Wesley Professional, Old Tappan (2015)Google Scholar
  16. 16.
    Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03596-9_1CrossRefGoogle Scholar
  17. 17.
    Motahari, H., Benatallah, B., Saint-Paul, R., Casati, F., Andritsos, P.: Process spaceship: discovering and exploring process views from event logs in data spaces. Proc. VLDB Endow. 1(2), 1412–1415 (2008)CrossRefGoogle Scholar
  18. 18.
    Phipathananunth, C., Bunyakiati, P.: Synthetic runtime monitoring of microservices software architecture. In: Proceedings of 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 02, pp. 448–453 (2018)Google Scholar
  19. 19.
    Pina, F., Correia, J., Filipe, R., Araujo, F., Cardroom, J.: Nonintrusive monitoring of microservice-based systems. In: Proceedings of the 17th International Symposium on Network Computing and Applications (NCA), pp. 1–8. IEEE (2018)Google Scholar
  20. 20.
    Wang, P., et al.: Cloudranger: root cause identification for cloud native systems. In: Proceedings of 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 492–502 (2018)Google Scholar
  21. 21.
    Xiao, J., Kalia, A.K., Vukovic, M.: Juno: an intelligent chat service for IT service automation. In: Liu, X., et al. (eds.) ICSOC 2018. LNCS, vol. 11434, pp. 486–490. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17642-6_49CrossRefGoogle Scholar
  22. 22.
    Zhu, L., Bass, L., Champlin-Scharff, G.: Devops and its practices. IEEE Softw. 33(03), 32–34 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Haan Johng
    • 1
    Email author
  • Anup K. Kalia
    • 2
  • Jin Xiao
    • 2
  • Maja Vuković
    • 2
  • Lawrence Chung
    • 1
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations