Modified Asymptotic Method of Studying the Mathematical Model of Nonlinear Oscillations Under the Impact of a Moving Environment

  • Petro PukachEmail author
  • Volodymyr Il’kiv
  • Zinovii Nytrebych
  • Myroslava Vovk
  • Pavlo Pukach
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)


Wave theory of movement is used to study the mathematical model of a physical system which describes oscillations of a one-dimensional elastic body under the impact of a moving continuous flow of a homogeneous environment. This model accounts for nonlinear elastic properties of the body at transverse oscillations, as well as environment density and movement velocity. Oscillation amplitude and frequency variation laws in nonresonant modes and under the impact of harmonic perturbation are obtained. Variation laws of the aforesaid parameters are defined by geometrical characteristics of the elastic body, physical and mechanical properties of the material, the velocity of the moving environment, the angular velocity of elastic body rotation, and external factors.


Mathematical model Physical system Dynamical process Nonlinear oscillations Wave theory 


  1. 1.
    Magrab, E.B.: An Engineer’s Guide to Mathematica. Wiley, Hoboken (2014)Google Scholar
  2. 2.
    Jones, D.I.G.: Handbook of Viscoelastic Vibration Damping. Wiley, Hoboken (2001)Google Scholar
  3. 3.
    Sobotka, Z.: Theory of Plasticity and Limit Design of Plates. Elsevier, Amsterdam (1989)zbMATHGoogle Scholar
  4. 4.
    Chen, L.-Q., Yang, X.-D., Cheng, C.-J.: Dynamic stability of an axially moving viscoelastic beam. Eur. J. Mech. A/Solids 23, 659–666 (2004)CrossRefGoogle Scholar
  5. 5.
    Hatami, S., Azhari, M., Saadatpour, M.M.: Free vibration of moving laminated composite plates. Compos. Struct. 80, 609–620 (2007)CrossRefGoogle Scholar
  6. 6.
    Banichuk, N., Jeronen, J., Neittaanmaki, P., Tuovinen, T.: Static instability analysis for traveling membranes and plates interacting with axially moving ideal fluid. J. Fluids Struct. 26, 274–291 (2010)CrossRefGoogle Scholar
  7. 7.
    Czaban, A., Szafraniec, A., Levoniuk, V.: Mathematical modelling of transient processes in power systems considering effect of high-voltage circuit breakers. Przeglad Elektro-techniczny 95(1), 49–52 (2019)Google Scholar
  8. 8.
    Mockersturm, E.M., Guo, J.: Nonlinear vibration of parametrically excited, visco-elastic, axially moving strings. J. Appl. Mech. ASME 72, 374–380 (2005)CrossRefGoogle Scholar
  9. 9.
    Kuttler, K.L., Renard, Y., Shillor, M.: Models and simulations of dynamic frictional contact. Comput. Methods Appl. Mech. Engrg. 177, 259–272 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lim, C.W., Li, C., Yu, J.-L.: Dynamic behaviour of axially moving nanobeams based on non-local elasticity approach. Acta Mech. Sinica 26, 755–765 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wickert, J.A., Mote Jr., C.D.: Classical vibration analysis of axially-moving continua. J. Appl. Mech. ASME 57, 738–744 (1990)CrossRefGoogle Scholar
  12. 12.
    Pukach, P.Ya., Kuzio, I.V.: Nonlinear transverse vibrations of semiinfinite cable with consideration paid to resistance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, no. 3, pp. 82–86 (2013)Google Scholar
  13. 13.
    Pukach, P., Il’kiv, V., Nytrebych, Z., Vovk, M., Pukach, P.: On the asymptotic methods of the mathematical models of strongly nonlinear physical systems. In: Advances in Intelligent Systems and Computing, vol. 689, pp. 421–433 (2018)Google Scholar
  14. 14.
    Lavrenyuk, S.P., Pukach, P.Ya.: Mixed problem for a nonlinear hyperbolic equation in a domain unbounded with respect to space variables. Ukrainian Math. J. 59, no. 11, pp. 1708–1718 (2007)Google Scholar
  15. 15.
    Buhrii, O.M.: Visco-plastic, newtonian, and dilatant fluids: stokes equations with variable exponent of nonlinearity. Matematychni Studii, vol. 49, no. 2, pp. 165–180 (2018)Google Scholar
  16. 16.
    Nytrebych, Z., Malanchuk, O., Il’kiv, V., Pukach, P.: On the solvability of two-point in time problem for PDE. Italian J. Pure Appl. Math. 38, 715–726 (2017)Google Scholar
  17. 17.
    Pukach, P.: Investigation of bending vibrations in Voigt-Kelvin bars with regard for non-linear resistance forces. J. Math. Sci. 215(1), 71–78 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRefGoogle Scholar
  20. 20.
    Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)CrossRefGoogle Scholar
  21. 21.
    Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie/ Chapman and Hall, London (1995)Google Scholar
  22. 22.
    Gao, X.-L., Park, S.K.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Zeitschrift furangewandte Mathematik und Physik 59, 904–917 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ma, H.M., Gao, X.-L., Reddy, J.N.: A non-classical Reddy-Levinson beam model based on a modified couple stress theory. Int. J. Multiscale Comput. Eng. 8, 167–180 (2010)CrossRefGoogle Scholar
  24. 24.
    Belmas, I.V., Kolosov, D.L., Kolosov, A.L., Onyshchenko, S.V.: Stress-strain state of rubber-cable tractive element of tubular shape. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, vol. 2, pp. 60–69 (2018)Google Scholar
  25. 25.
    Mahmoodi, S.N., Jalili, N.: Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers. Int. J. Non-Linear Mech. 42, 577–587 (2007)CrossRefGoogle Scholar
  26. 26.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)zbMATHGoogle Scholar
  27. 27.
    Nayfeh, A.H., Mook, D.T.: Non-Linear Oscillations. Wiley, New York (1979)zbMATHGoogle Scholar
  28. 28.
    Pain, H.J.: The Physics of Vibration and Waves, 6th edn. Wiley, New York (2005)CrossRefGoogle Scholar
  29. 29.
    Chen, L.-Q., Chen, H.: Asymptotic analysis of nonlinear vibration of axially accelerating visco-elastic strings with the standard linear solid model. J. Eng. Math. 67, 205–218 (2010)CrossRefGoogle Scholar
  30. 30.
    Bayat, M., Barari, A., Shahidi, M.: Dynamic response of axially loaded Euler-Bernoulli beams. Mechanika 17(2), 172–177 (2011)CrossRefGoogle Scholar
  31. 31.
    Teslyuk, V.M.: Models and Information Technologies of Micro-electromechanical Systems Synthesis. Vezha and Кo, Lviv (2008)Google Scholar
  32. 32.
    Nytrebych, Z., Il’kiv, V., Pukach, P., Malanchuk, O.: On nontrivial solutions of homogeneous Dirichlet problem for partial differential equations in a layer. Kragujevac J. Mathem. 42(2), 193–207 (2018)Google Scholar
  33. 33.
    Pukach, P.Ya., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Analytical methods for determining the effect of the dynamic process on the nonlinear flexural vibrations and the strength of compressed shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 69–76 (2017)Google Scholar
  34. 34.
    Pukach, P.Ya., Kuzio, I.V., Nytrebych, Z.M., Ilkiv, V.S.: Asymptotic method for investigating resonant regimes of non–linear bending vibrations of elastic shaft. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 1, 68–73 (2018)CrossRefGoogle Scholar
  35. 35.
    Kauderer, H.: Nonlinear Mechanics. Izdatelstvo Inostrannoy Literatury, Moscow (1961). (in Russian)Google Scholar
  36. 36.
    Pukach, P., Nytrebych, Z., Ilkiv, V., Vovk, M., Pukach, Yu.: On the mathematical model of nonlinear oscillations under the impact of a moving environment. In: Proceedings of International scientific conference Computer sciences and information technologies (CSIT-2019), vol. 1, pp. 71–74 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computational Mathematics and ProgrammingLviv Polytechnic National UniversityLvivUkraine
  2. 2.Department of MathematicsLviv Polytechnic National UniversityLvivUkraine
  3. 3.Department of Artificial Intelligence SystemsLviv Polytechnic National UniversityLvivUkraine

Personalised recommendations