Improving Keyphrase Extraction Using LL-Ranking

  • Svetlana PopovaEmail author
  • Vera Danilova
  • Mikhail Alexandrov
  • John Cardiff
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)


Keyphrases provide a concise representation of the main content of a document and can be effectively used within information retrieval systems. In the paper, we deal with the keyphrase extraction problem when a given number of keyphrases for a text should be extracted. The research is focused on the keyphrase candidates ranking stage. In the domain, the question remains open of whether the keyphrase extraction quality can be improved by putting limits on the number of phrases of different lengths extracted during candidate ranking. We assume that the quality of resulting keyphrases can be enhanced if we introduce \(\underline{L}\)imitations on the number of phrases of specific \(\underline{L}\)engths in the resulting set (LL-ranking strategy). The experiments are performed on the well-known INSPEC dataset of scientific abstracts. The obtained results show that the proposed limitations help to significantly increase the quality of extracted keyphrases in terms of Precision and F1.


Keyphrase extraction Keyphrase candidates ranking Length feature in keyphrase extraction problem 



The reported study was partially funded by RFBR (Russian Fund of Basic Research) according to the research projects No. 16-37-00430 mol_a (for Svetlana Popova) and No. 18-07-01441 a (for Mikhail Alexandrov).


  1. 1.
    Turney, P.: Learning algorithms for keyphrase extraction. Inf. Retr. 2, 303–336 (2000)CrossRefGoogle Scholar
  2. 2.
    Gutwin, C., Paynter, G., Witten, I., Nevill-Manning, C., Frank, E.: Improving browsing in digital libraries with keyphrase indexes. J. Decis. Support Syst. 27, 81–104 (1999)CrossRefGoogle Scholar
  3. 3.
    Bernardini, A., Carpineto, C.: Full-subtopic retrieval with keyphrase-based search results clustering. In: Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009 (2009)Google Scholar
  4. 4.
    Zeng, H.-J., He, Q.-C.,Chen, Z., Ma, W.-Y., Ma, J.: Learning to cluster web search results. In: Proceeding SIGIR 2004, pp. 210–217 (2004)Google Scholar
  5. 5.
    Popova, S., et al.: Sci-search: academic search and analysis system based on keyphrases. In: The 4th Conference on Knowledge Engineering and Semantic Web, Russia. Communications in Computer and Information Science Series, vol. 394, pp. 281-288. Springer (2013)Google Scholar
  6. 6.
    Popova, S., Danilova, V.: Using extended stopwords lists to improve the quality of academic abstracts clustering. In: OTM 2016 Workshops. LNCS, vol. 10034. Springer, Cham (2017)Google Scholar
  7. 7.
    Hammouda, K., Matute, D., Kamel, M.: CorePhrase: keyphrase extraction for document clustering. In: MLDM 2005. LNCS, vol. 3587, pp. 265–274. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Hulth, A., Megyesi, B.: A study on automatically extracted keywords in text categorization. In: Proceedings of the Coling/ACL 2006, pp. 537–544 (2006)Google Scholar
  9. 9.
    Berend, G.: Opinion expression mining by exploiting keyphrase extraction. In: Proceedings of the 5th International Joint Conference on Natural Language Processing, pp. 1162–1170 (2011)Google Scholar
  10. 10.
    Jones, S., Lundy, S., Paynter, G.W.: Interactive document summarization using automatically extracted keyphrases. In: HICSS 2002, vol. 4 (2002)Google Scholar
  11. 11.
    DÁvanzo, E., Magnini, B.: A keyphrase-based approach to summarization: the LAKE system at DUC-2005. In: Proceedings of DUC 2005 (2005)Google Scholar
  12. 12.
    Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the EMNLP 2003, pp. 216–223 (2003)Google Scholar
  13. 13.
    Mihalcea, R.: TextRank: bringing order into texts. In: Proceedings of EMNLP 2004, Barcelona, Spain, pp. 404–411 (2004)Google Scholar
  14. 14.
    Wan, X., Xiao, J.: Single document keyphrase extraction using neighborhood knowledge. In: Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 855–860 (2008)Google Scholar
  15. 15.
    Wang, L., Li, S: PKU ICL at SemEval-2017 task 10: keyphrase extraction with model ensemble and external knowledge. In: Proceedings of SemEval-2017, pp. 934–937 (2017)Google Scholar
  16. 16.
    Marsi, E., Skidar, U., Marco, C., Barik, B., Saetre, R.: NTNU-1@ScienceIE at SemEval-2017 task 10: identifying and labelling keyphrases with conditional random fields. In: Proceedings of SemEval-2017, pp. 938–941 (2017)Google Scholar
  17. 17.
    Prasad, A., Kan, M.-Y.: WING-NUS at SemEval-2017 task 10: keyphrase identification and classification as joint sequence labeling. In: Proceedings of SemEval-2017, pp. 973–977 (2017)Google Scholar
  18. 18.
    Dung, T.N., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: ICADL 2007 Proceedings of the 10th International Conference on Asian Digital Libraries: Looking Back 10 Years and Forging New Frontiers, pp. 317-326 (2007)Google Scholar
  19. 19.
    Lopez, P., Romary, L.: HUMB: automatic key term extraction from scientific articles in GROBID. In: SemEval-2010, ACL 2010, pp. 248–251 (2010)Google Scholar
  20. 20.
    El-Beltagy, S.R., Rafea, A.: KP-Miner: participation in SemEval-2. In: Proceedings SemEval-2010, ACL 2010, pp. 190–193 (2010)Google Scholar
  21. 21.
    Dung, T.N., Kan, M.-Y.: WINGNUS: keyphrase extraction utilizing document logical structure. In: Proceedings SemEval-2010, ACL 2010, pp. 166–169 (2010)Google Scholar
  22. 22.
    Danesh, S., Sumner, T., Martin, J.H.: SGRank: combining statistical and graphical methods to improve the state of the art in unsupervised keyphrase extraction. In: Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pp. 117–126 (2015)Google Scholar
  23. 23.
    Sterckx, L., Caragea, C., Demeester, T., Develder, C.: Supervised keyphrase extraction as positive unlabeled learning. In: Proceedings EMNLP 2016, pp. 1924–1929 (2016)Google Scholar
  24. 24.
    Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic keyphrase extraction. In: Proceeding EMNLP 2009, vol. 3, pp. 1318-1327 (2009)Google Scholar
  25. 25.
    Tsatsaronis, G., Varlamis, I., Norvag, K.: SemanticRank: ranking keywords and sentences using semantic graphs. In: Proceeding of the Coling 2010, pp. 1074–1082 (2010)Google Scholar
  26. 26.
    Hasan, K., Ng, V.: Automatic keyphrase extraction: a survey of the state of the art. In: 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014 - Proceedings of the Conference, pp. 1262–1273 (2014)Google Scholar
  27. 27.
    Kim, S.N., Baldwin, T., Kan. M.-Y.: Evaluating N-gram based evaluation metrics for automatic keyphrase extraction. In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), Beijing, pp. 572–580 (2010)Google Scholar
  28. 28.
    Zesch, T., Gurevych, I.: Approximate matching for evaluating keyphrase extraction. In: International Conference RANLP 2009, Borovets, Bulgaria, pp. 484–489 (2009)Google Scholar
  29. 29.
    Liu, Z., Li, P., Zheng, Y., Sun, M.: Clustering to find exemplar terms for keyphrase extraction. In: Proceedings EMNLP 2009, pp. 257–266 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Svetlana Popova
    • 1
    • 2
    Email author
  • Vera Danilova
    • 3
  • Mikhail Alexandrov
    • 3
    • 4
  • John Cardiff
    • 1
  1. 1.Technological University DublinDublinIreland
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.RANEPAMoscowRussia
  4. 4.Autonomous University of BarcelonaBarcelonaSpain

Personalised recommendations