Advertisement

Situation Diagnosis Based on the Spatially-Distributed Dynamic Disaster Risk Assessment

  • Maryna ZharikovaEmail author
  • Volodymyr Sherstjuk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)

Abstract

A dynamic spatially-distributed model of integral risk assessment is represented in the paper. A multi-risk for a valuable object is formed as a combination of four components such as danger, threat potential, threat level, and potential losses. In order to provide comparing the risks from different disasters and assess their joint influence on the valuable object in the form of multi-risk a quantitative value of each risk component is proposed to represent in the form of qualitative value using the appropriate scales. A diagnostic method for disaster response operations based on the spatially-distributed model of integral risk assessment is developed. A hybrid algorithm of identification of the situation in disaster conditions using the case-based and rule-based reasoning is described. The experiment examining the validity and efficiency of the proposed hybrid diagnosis method is described. It’s concluded that the proposed method provides sufficient performance for the cell size 5 m and above, so it is acceptable for solving the practical forest fire fighting problems in GIS-based DSS.

Keywords

Forest fire fighting Disaster Risk Intelligent diagnosis method Symptoms Situation 

References

  1. 1.
    Shen, G., Zhou, L., Wu, Y., Cai, Z.: A global expected risk analysis of fatalities, injuries, and damages by natural disasters. Sustainability 10(7), 2573 (2018).  https://doi.org/10.3390/su10072573CrossRefGoogle Scholar
  2. 2.
    Thompson, M.P., Haas, J.R., Gilbertson-Day, J.V., Scott, J.H., Langowski, P., Bpwne, E., Calkin, D.: Development and application of a geospatial wildfire exposure and risk calculation tool. Environ. Model Softw. 63, 61–72 (2015).  https://doi.org/10.1016/j.envsoft.2014.09.018CrossRefGoogle Scholar
  3. 3.
    Thompson, M.P., Calkin, D.E., Finney, M.A., Ager, A.A., Gilbertson-Day, J.V.: Integrated national-scale assessment of wildfire risk to human and ecological values. Stoch. Environ. Res. Risk Assess. 25(6), 761–780 (2011).  https://doi.org/10.1007/s00477-011-0461-0CrossRefGoogle Scholar
  4. 4.
    Thompson, M.P., Zimmerman, T., Mindar, D., Taber, M.: Risk terminology primer: basic principles and glossary for the wildland fire management community. Gen. Tech. Rep. RMRS-GTR-349. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (2016)Google Scholar
  5. 5.
    Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., Marcomini, A.: A review of multi-risk methodologies for natural hazards: consequences and challenges for a climate change impact assessment. J. Environ. Manag. 168, 123–132 (2016).  https://doi.org/10.1016/j.jenvman.2015.11.011CrossRefGoogle Scholar
  6. 6.
    World Meteorological Organization (WMO): Comprehensive risk assessment for natural hazards. Geneva: WMO/TD No. 955, Switzerland (1999)Google Scholar
  7. 7.
    Zharikova, M.: Methodological basis of geoinformation technology of decision support in combined natural and man-made systems in destructive processes conditions. Doctoral Thesis, Ukrainian Academy of Printing, Lviv, Ukraine (2018)Google Scholar
  8. 8.
    Van Westen, C.J., Shroder, J., Bishop, M.P.: Remote sensing and GIS for natural hazards assessment and disaster risk management. Treatise Geomorphol. 3, 259–298 (2013).  https://doi.org/10.1016/B978-0-12-374739-6.00051-8CrossRefGoogle Scholar
  9. 9.
    Calkin, D.E., Thompson, M.P., Finney, M.A., Hyde, K.D.: A real-time assessment tool supporting wildland fire decision making. J. For. 109(5), 274–280 (2011)Google Scholar
  10. 10.
    Finney, M.: Modeling the spread and behavior of prescribed natural fires. In: Proceedings of the 12th Conference on Fire and Forest Meteorology, Jekyll Island, Georgia, pp. 138–143 (1993)Google Scholar
  11. 11.
    Finney, M.: The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 211(1–2), 97–108 (2005).  https://doi.org/10.1016/j.foreco.2005.02.010CrossRefGoogle Scholar
  12. 12.
    Rausand, M., Hoyland, A.: System Reliability Theory: Models, Statistical Methods, and Applications. Wiley-Interscience, Hoboken (2004)zbMATHGoogle Scholar
  13. 13.
    Kloprogge, P., Van der Sluijs, J., Petersen, A.: A Method for the Analysis of Assumptions in Assessments. Netherlands Environmental Assessment Agency, Bilthoven (2005)Google Scholar
  14. 14.
    Krishnamoorthi, N.: Role of remote sensing and GIS in natural-disaster management cycle. Imp. J. Interdiscip. Res. 2(3), 144–154 (2016)Google Scholar
  15. 15.
    Zharikova, M., Sherstjuk, V.: Threat assessment method for intelligent disaster decision support. Advances in Intelligent Systems and Computing, vol. 512, pp. 81–100 (2017).  https://doi.org/10.1007/978-3-319-45991-2_6
  16. 16.
    Balakrishnan, K., Honavar, V.: Intelligent diagnosis systems. J. Intell. Syst. 8(3), 237–290 (1998).  https://doi.org/10.1515/JISYS.1998.8.304.239CrossRefGoogle Scholar
  17. 17.
    Cheng, T., Kocka, T., Zhang, N.L.: Effective dimensions of partially observed polytrees. Int. J. Approx. Reason. 38(3), 311–332 (2005).  https://doi.org/10.1016/j.ijar.2004.05.008MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lucas, P.J.F.: Bayesian model-based diagnosis. Int. J. Approx. Reason. 27(2), 99–119 (2001).  https://doi.org/10.1016/S0888-613X(01)00036-6MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bhagwat, A.: Knowledge-based service diagnosis system. Int. J. Comput. Sci. Technol. 3(5), 182–184 (2015)Google Scholar
  20. 20.
    Ward, M.O., Grinstein, G.G., Keim, D.A.: Interactive Data Visualization - Foundations, Techniques, and Applications. A.K. Peters, Ltd., Natick (2010).  https://doi.org/10.1201/9780429108433CrossRefzbMATHGoogle Scholar
  21. 21.
    Amarosicz, M., Psiuk, K., Rogala, T., Rzydzik, S.: Diagnostic shell expert systems. Diagnostica 17(1), 33–40 (2016)Google Scholar
  22. 22.
    Tan, C.F., Wahidin, L.S., Khalil, S.N., Tamaldin, N., Hu, J., Rauterberg, G.W.M.: The application of expert system: a review of research and applications. ARPN J. Eng. Appl. Sci. 11(4), 2448–2453 (2016)Google Scholar
  23. 23.
    Martinez, J., Vega-Garcia, C., Chuvieco, E.: Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 90(2), 1241–1252 (2009).  https://doi.org/10.1016/j.jenvman.2008.07.005CrossRefGoogle Scholar
  24. 24.
    Martinez, M.V.: Knowledge engineering for intelligent decision support. In: Proceeding of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017), Montreal, pp. 5131–5135 (2017).  https://doi.org/10.24963/ijcai.2017/736
  25. 25.
    Rieck, C.Z., Wu, X.W., Jiang, J.C., Zhu, A.X.: Case-based knowledge formalization and reasoning method for digital terrain analysis – application to extracting drainage networks. Hydrol. Earth Syst. Sci. 20, 3379–3392 (2016).  https://doi.org/10.5194/hess-2015-539CrossRefGoogle Scholar
  26. 26.
    Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behavior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)CrossRefGoogle Scholar
  27. 27.
    Symeonidisa, A.L., Chatzidimitriouc, K.C., Athanasiadisd, I.N., Mitkas, P.A.: Data mining for agent reasoning: a synergy for training intelligent agents. Eng. Appl. Artif. Intell. 20(8), 1097–1111 (2007).  https://doi.org/10.1016/j.engappai.2007.02.009CrossRefGoogle Scholar
  28. 28.
    Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57(1), 345–420 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gong, Y., Li, J., Zhou, Y., Li, Y., Chung, H.S., Shi, Y., Zhang, J.: Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46(10), 2277–2290 (2016).  https://doi.org/10.1109/TCYB.2015.2475174CrossRefGoogle Scholar
  30. 30.
    Hoffman, R.: Origins of situation awareness: cautionary tales from the history of concepts of attention. J. Cogn. Eng. Decis. Mak. 9(1), 73–83 (2015).  https://doi.org/10.1177/1555343414568116CrossRefGoogle Scholar
  31. 31.
    Fogel, D.B., Fogel, L.J., Porto, V.W.: Evolving neural networks. Biol. Cybern. 63(6), 487–493 (1990)CrossRefGoogle Scholar
  32. 32.
    Allam, A.A., Bakeir, M.Y., Abo-Tabl, E.A.: Some methods for generating topologies by relations. Bull. Malays. Math. Sci. Soc. 31(1), 35–45 (2008)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Scott, J.H., Thompson, M.P., Calkin, D.E.: A wildfire risk assessment framework for land and resource management. Gen. Tech. Rep. RMRS-GTR-315. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station (2013)Google Scholar
  34. 34.
    Apostolakis, G.E.: How useful is quantitative risk assessment. Risk Anal. 24(3), 515–520 (2004).  https://doi.org/10.1111/j.0272-4332.2004.00455.xCrossRefGoogle Scholar
  35. 35.
    Aven, T., Zio, E.: Model output uncertainty in risk assessment. Int. J. Perform. Eng. 9(5), 475–486 (2013)Google Scholar
  36. 36.
    Andreu, A., Hermansen-Baez, L.A.: Fire in the South 2: the southern wildfire risk assessment. A report by Southern Group of State Forester, 32 p. (2008)Google Scholar
  37. 37.
    Dubois, D., Prade, H.: Possibility theory, probability theory, and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2001).  https://doi.org/10.1023/A:1016740830286MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Sets Syst. 84(2), 169–185 (1996).  https://doi.org/10.1016/0165-0114(96)00066-8MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets Syst. 144(1), 3–23 (2004).  https://doi.org/10.1016/j.fss.2003.10.011MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Pawlak, Z., Jerzy, W., Slowinski, R., Ziarko, W.: Rough sets. Commun. ACM 38(11), 88–95 (1995).  https://doi.org/10.1145/219717.219791CrossRefGoogle Scholar
  41. 41.
    Zharikova, M., Sherstjuk, V.: The hybrid intelligent diagnosis method for the MultiUAV-Based forest fire-fighting response system. In: Proceedings of 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, pp. 339–342 (2018).  https://doi.org/10.1109/STC-CSIT.2018.8526609
  42. 42.
    Zharikova, M., Sherstjuk, V.: Situation diagnosis based on the spatially-distributed dynamic disaster risk assessment In: Proceedings of the International Scientific Conference “Computer sciences and information technologies” (CSIT 2019), vol. 3, pp. 205–209. IEEE (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Kherson National Technical UniversityKhersonUkraine

Personalised recommendations