Advertisement

Mathematical Models and Program of Resource Feedbacks in the Systems «Production, Retail»

  • Taisa BorovskaEmail author
  • Dmitry Grishin
  • Irina Kolesnik
  • Victor Severilov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1080)

Abstract

The research is devoted to the development of new mathematical models and programs for the analysis and synthesis of systems «production, retail» taking into account information and resource feedbacks. A specific feature of current scientific and practical problems in this area is the substantial nonlinearity, nonstationarity, stochasticity, and high dimensionality of the feedbacks. The classification of the feedbacks in the systems «production, retail» has been performed. To solve the control problems, the methods of optimal aggregation are used. Mathematical models and programs for binary operators of aggregation of structures with feedback are developed. Solutions of optimization problems for parallel and sequential structures with the feedbacks. The study of the dynamics and steady states of the structures with the feedbacks «returning the cost of production», «recycling of waste» has been carried out. To study the dynamics of the retail the simulation model of «producers, consumers» is used. Examples of modeling are given.

Keywords

Optimal aggregation Feedback Production function Information technology 

References

  1. 1.
    Borovska, T.M., Kolesnik, I.S., Severilov, V.A.: Method of optimal aggregation in optimization problems: monograph. UNIVERSUM–Vinnytsia, Vinnytsia (2009). 229 p.Google Scholar
  2. 2.
    Borovska, T.M., Badiora, S.P., Severilov, V.A., Severilov, P.V.: Modeling and optimization of the processes of the production systems development taking into consideration the usage of the external resources and development effects: monograph; under the general editorship of Borovska, T.M., VNTU, Vinnytsia (2009). 255 p.Google Scholar
  3. 3.
    Borovska, T.M., Vernigora, I.V., Grishin, D.I., Severilov, V.A., Gromaszek, K., Aizhanova, A.: Adaptive production control system based on optimal aggregation methods. In: Proceedings of SPIE, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, vol. 10808, 108086O, 1 October 2018.  https://doi.org/10.1117/12.2501520
  4. 4.
    Forrester, J.: Fundamentals of cybernetics of the enterprise (Industrial dynamics): Translated from English. Probgress (1971). 340 p.Google Scholar
  5. 5.
    Opoitsev, V.I.: Equilibrium and stability in models of collective behavior. USSR: World, Moscow (1977). 346 p.Google Scholar
  6. 6.
    Borovska, T.M., Vernigora, I.V., Wójcik, W., Gromaszek, K., Smailova, S., Orazbekov, Z.: Mathematical models of production systems development based on optimal aggregation methodology. In: Proceedings of the SPIE, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments, vol. 10445, 104452P, 7 August 2017.  https://doi.org/10.1117/12.2281222
  7. 7.
    Leontiev, V.: Theoretical assumptions and nonobservable facts. Economy, ideology, politics, USA, no. 9, p. 15 (1972)Google Scholar
  8. 8.
    Bellman, R., Gliksberg, I., Gross, O.: Certain problems of mathematical control theory. Publishing House of Foreign Literature (1962). 233 p.Google Scholar
  9. 9.
    Rüttimann, B.: Introduction to Modern Manufacturing Theory. Springer International Publishing AG 2018 (2016). 149 p.  https://doi.org/10.1007/978-3-319-58601-4
  10. 10.
    Nersessian, N.J., Chandrasekharan, S.: Hybrid analogies in conceptual innovation in science. Cogn. Syst. Res. 10, 178–188 (2009).  https://doi.org/10.1016/j.cogsys.2008.09.009CrossRefGoogle Scholar
  11. 11.
    Borovska, T.M., Severilov, V.A., Badiora, S.P., Kolesnik, I.S.: Modeling of the investments management problems: manual for graduate students. VNTU, Vinnytsia (2009). 178 p.Google Scholar
  12. 12.
    Vasylska, M.V., Kolesnik, I.S., Severilov, V.A.: Models-predictors: problems of development and adequacy. Bull. Vinnytsia Polytech. Inst., no. 4, pp. 114–121 (2011)Google Scholar
  13. 13.
    Peschel, M.: Modeling of Signals and Systems. Translated from German. Mir (1981). 302 p.Google Scholar
  14. 14.
    Меsarovych, М., Macko, D., Takahara, I.: Theory of hierarchic multilevel systems, Мir (1973). 344 p.Google Scholar
  15. 15.
    Fagin, R., Kumar, R., Sivakumar, D.: Efficient similarity search and classification via rank aggregation. In: Proceedings of the 2003 ACM SIGMOD international Conference on Management of Data (San Diego, California), SIGMOD 2003, pp. 301–312. ACM Press, New York (2003). .  https://doi.org/10.1145/872794.872795
  16. 16.
    Severilov, P.V., Borovska, T.N., Dmytryk, Y.N., Khomyn, E.P.: Modeling and optimization of agrarian systems with waste recycling in bioreactors. Nauka i studia (Poland), no. 16(126), pp. 42–50 (2014). ISSN 1561-6894Google Scholar
  17. 17.
    Borovska, T.N., Kolesnik, I.S., Severilov, V.A., Shulgan, I.V.: Optimal aggregation of the integrated systems «production-development». Information technologies and computer engineering, no. 2(30), pp. 18–28 (2014). ISSN 1999-9941Google Scholar
  18. 18.
    Borovska, T.M.: Optimal aggregation of the production systems with parametric couplings. Eastern Euro. J. Adv. Technol. 4(11(70)), 9–19 (2014).  https://doi.org/10.15587/1729-4061.2014.26306CrossRefGoogle Scholar
  19. 19.
    Borovska, T.M., Kolesnik, I.S., Severilov, V.A., Severilov, P.V.: Models of optimal innovation development of production systems. East-Euro. J. Adv. Technol. Math. Inf. Support Comput. Integr. Control Syst. 5(71), 42–50 (2014).  https://doi.org/10.15587/1729-4061.2014.28030CrossRefGoogle Scholar
  20. 20.
    Boubaker, O., Babary, J.P., Ksouri, M.: Variable structure estimation and control of nonlinear distributed parameter bioreactors systems, man, and cybernetics. In: IEEE International Conference on Digital Object Identifier, vol. 4, pp. 3770–3774 (1998).  https://doi.org/10.1109/icsmc.1998.726674
  21. 21.
    Baader, W., Dohne, E., Brenndörfer, M.: Biogas in Theorie und Praxis (translated from German, preface of Serebrian, M.I.). Kolos (1982). 540 p.Google Scholar
  22. 22.
    Pollock, J., Coffman, J., Ho, S.V., Farid, S.S.: Integrated continuous bioprocessing: economic, operational, and environmental feasibility for clinical and commercial antibody manufacture. Biotechnol. Prog. 33(4), 854–866 (2017)CrossRefGoogle Scholar
  23. 23.
    Brethauer, S., Studer, M.H.: Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ. Sci. 7(4), 1446–1453 (2014).  https://doi.org/10.1039/c3ee41753kCrossRefGoogle Scholar
  24. 24.
    El-Moslamy, S.H., El-Morsy, E.S.M., Mohaisen, M.T., Rezk, A.H., Abdel-Fattah, Y.R.: Industrial bioprocessing strategies for cultivation of local Streptomyces violaceoruber strain SYA3 to fabricate Nano-ZnO as anti-phytopathogens agent. J. Pure Appl. Microbiol. 12(3), 1133–1145 (2018)CrossRefGoogle Scholar
  25. 25.
    Coase, R.H.: The problem of social cost. J. Law Econ. 3, 1–44 (1960)CrossRefGoogle Scholar
  26. 26.
    Borovska, T., Vernigora, I., Severilov, V., Kolesnik, I., Shestakevych, T.: Model of innovative development of production systems based on the methodology of optimal aggregation. In: Advances in Intelligent Systems and Computing III, pp. 171–181. Springer, Cham (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Vinnytsia National Technical UniversityVinnytsiaUkraine

Personalised recommendations