Advertisement

Depletion-Driven Solid–Solid Coexistence in Colloid–Polymer Mixtures

  • Álvaro González GarcíaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Hard spheres mixed with penetrable hard spheres display an isostructural solid–solid transition. This phase transition is fully driven by the entropy gain of the depletants without invoking explicit pair potentials between the colloidal particles. The solid–solid phase coexistence exists for size ratios \(q\equiv \delta /R \lesssim 0.09\), with \(\delta \) the penetrable hard sphere radius and R the hard sphere radius. This coexistence is revealed using a modified free volume theory, where the free volume fraction for depletants in the solid phase is calculated on geometrical grounds. Due to a better account of the small depletant partitioning, the fluid branch of the fluid–solid coexistence also decreases with decreasing q. Colloid–polymer mixtures are an excellent candidate for the experimental realization of this intricate solid–solid transition, first predicted by Bolhuis and Frenkel for hard spheres with short range pair attractions [PRL 72, 2211–2214 (1994)].

References

  1. 1.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976).  https://doi.org/10.1351/pac197648040471
  2. 2.
    G.J. Fleer, R. Tuinier, Adv. Colloid Interface Sci. 143, 1 (2008).  https://doi.org/10.1016/j.cis.2008.07.001
  3. 3.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954).  https://doi.org/10.1063/1.1740347
  4. 4.
    S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958).  https://doi.org/10.1002/pol.1958.1203312618
  5. 5.
    A. Fortini, M. Dijkstra, R. Tuinier, J. Phys.: Condens. Matter 17, 7783 (2005), http://stacks.iop.org/0953-8984/17/i=50/a=002
  6. 6.
  7. 7.
    M. Dijkstra, R. van Roij, R. Roth, A. Fortini, Phys. Rev. E 73, 041404 (2006), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.73.041404
  8. 8.
  9. 9.
    J. Jover, A. Galindo, G. Jackson, E.A. Müller, A.J. Haslam, Mol. Phys. 113, 2608 (2015).  https://doi.org/10.1080/00268976.2015.1047425
  10. 10.
    W.G. Hoover, F.H. Ree, J. Chem. Phys. 49, 3609 (1968), https://aip.scitation.org/doi/10.1063/1.1670641
  11. 11.
    H.N.W. Lekkerkerker, R. Tuinier, Colloids and the Depletion Interaction (Springer, Heidelberg, 2011)Google Scholar
  12. 12.
    M. Dijkstra, J.M. Brader, R. Evans, J. Phys.: Condens. Matter 11, 10079 (1999)Google Scholar
  13. 13.
    F.L. Calderon, J. Bibette, J. Biais, Europhys. Lett. 23, 653 (1993), http://stacks.iop.org/0295-5075/23/i=9/a=006
  14. 14.
    H.N.W. Lekkerkerker, Colloids Surf. 51, 419 (1990), https://www.sciencedirect.com/science/article/abs/pii/016666229080156X
  15. 15.
    H.N.W. Lekkerkerker, W.C.K. Poon, P.N. Pusey, A. Stroobants, P.B. Warren, Europhys. Lett. 20, 559 (1992).  https://doi.org/10.1209/0295-5075/20/6/015
  16. 16.
    P.G. Bolhuis, E.J. Meijer, A.A. Louis, Phys. Rev. Lett. 90, 068304 (2003).  https://doi.org/10.1103/PhysRevLett.90.068304
  17. 17.
    A. Moncho-Jordá, A.A. Louis, P.G. Bolhuis, R. Roth, J. Phys.: Condens. Matter 15, S3429 (2003), http://stacks.iop.org/0953-8984/15/i=48/a=004
  18. 18.
    K.J. Mutch, J.S. van Duijneveldt, J. Eastoe, Soft Matter 3, 155 (2007).  https://doi.org/10.1039/B611137H
  19. 19.
    P.G. Bolhuis, A.A. Louis, J.P. Hansen, E.J. Meijer, J. Chem. Phys. 114, 4296 (2001).  https://doi.org/10.1063/1.1344606
  20. 20.
    R. Piazza, G.D. Pietro, Europhys. Lett. 28, 445 (1994), http://stacks.iop.org/0295-5075/28/i=6/a=012
  21. 21.
    J. Bibette, D. Roux, F. Nallet, Phys. Rev. Lett. 65, 2470 (1990).  https://doi.org/10.1103/PhysRevLett.65.2470
  22. 22.
    J.A. Barker, D. Henderson, J. Chem. Phys. 47, 4714 (1967).  https://doi.org/10.1063/1.1701689
  23. 23.
    P. Ehrenfest, Commun. Phys. Lab. Univ. Leiden 75b (1933), https://www.lorentz.leidenuniv.nl/IL-publications/Ehrenfest.html
  24. 24.
    G. Jaeger, Arch. Hist. Exact Sci. 53, 51 (1998), https://link.springer.com/article/10.1007/s004070050021
  25. 25.
    C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73, 752 (1994), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.752
  26. 26.
    C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. E 51, 558 (1995).  https://doi.org/10.1103/PhysRevE.51.558
  27. 27.
    Z.T. Nemeth, C.N. Likos, J. Phys.: Condens. Matter 7, L537 (1995), http://stacks.iop.org/0953-8984/7/i=41/a=002
  28. 28.
    C.N. Likos, G. Senatore, J. Phys.: Condens. Matter 7, 6797 (1995), http://stacks.iop.org/0953-8984/7/i=34/a=005
  29. 29.
    C. Rascón, L. Mederos, G. Navascués, J. Chem. Phys. 103, 9795 (1995).  https://doi.org/10.1063/1.469944
  30. 30.
    G. Foffi, G.D. McCullagh, A. Lawlor, E. Zaccarelli, K.A. Dawson, F. Sciortino, P. Tartaglia, D. Pini, G. Stell, Phys. Rev. E 65, 031407 (2002).  https://doi.org/10.1103/PhysRevE.65.031407
  31. 31.
    P.G. Bolhuis, D. Frenkel, Phys. Rev. Lett. 72, 2211 (1994), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.2211
  32. 32.
    P.G. Bolhuis, M. Hagen, D. Frenkel, Phys. Rev. E 50, 4880 (1994), https://journals.aps.org/pre/abstract/10.1103/PhysRevE.50.4880
  33. 33.
    M. Dijkstra, R. van Roij, R. Evans, Phys. Rev. Lett. 81, 2268 (1998).  https://doi.org/10.1103/PhysRevLett.81.2268
  34. 34.
    K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaïd, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 296, 104 (2002).  https://doi.org/10.1126/science.1068238
  35. 35.
    E. Zaccarelli, W.C.K. Poon, Proc. Natl. Acad. Sci. USA 106, 15203 (2009), https://www.pnas.org/content/106/36/15203
  36. 36.
    C.P. Royall, S.R. Williams, H. Tanaka, J. Chem. Phys. 148, 044501 (2018).  https://doi.org/10.1063/1.5000263
  37. 37.
    C. Gögelein, R. Tuinier, Eur. Phys. J. E 27, 171 (2008).  https://doi.org/10.1140/epje/i2008-10367-6

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Department of Chemistry and Debye InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations