Skip to main content

Training Auto-Encoder-Based Optimizers for Terahertz Image Reconstruction

  • Conference paper
  • First Online:
Book cover Pattern Recognition (DAGM GCPR 2019)

Abstract

Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimizing without the network-based initialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural networks. In: Proceedings of International Conference on Machine Learning (2017)

    Google Scholar 

  2. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Proceedings of International Conference on Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  3. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of SIGGRAPH, pp. 187–194. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA (1999). https://doi.org/10.1145/311535.311556

  4. Chan, W.L., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Rep. Prog. Phys. 70(8), 1325 (2007)

    Article  Google Scholar 

  5. Chang, J.H., Li, C.L., Poczos, B., Kumar, B.V., Sankaranarayanan, A.: One network to solve them all – solving linear inverse problems using deep projection models. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  6. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  MathSciNet  Google Scholar 

  7. Cooper, K.B., Dengler, R.J., Llombart, N., Thomas, B., Chattopadhyay, G., Siegel, P.H.: THz imaging radar for standoff personnel screening. IEEE Trans. Terahertz Sci. Technol. 1(1), 169–182 (2011)

    Article  Google Scholar 

  8. Ding, J., Kahl, M., Loffeld, O., Haring Bolívar, P.: THz 3-D image formation using sar techniques: simulation, processing and experimental results. IEEE Trans. Terahertz Sci.Technol. 3(5), 606–616 (2013)

    Article  Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  11. Heckel, R., Hand, P.: Deep decoder: Concise image representations from untrained non-convolutional networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  12. Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718 (1995)

    Article  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: Proceedings of International Conference on Machine Learning (2015)

    Google Scholar 

  14. Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., Krumbholz, N., Jördens, C., Hochrein, T., Koch, M.: Terahertz imaging: applications and perspectives. Appl. Opt. 49(19), E48–E57 (2010)

    Article  Google Scholar 

  15. Kahl, M., et al.: Stand-off real-time synthetic imaging at mm-wave frequencies. In: Passive and Active Millimeter-Wave Imaging XV. vol. 8362, p. 836208 (2012)

    Google Scholar 

  16. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: connecting variational methods and deep learning. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 281–293. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_23

    Chapter  Google Scholar 

  19. Long, Z., Wang, T., You, C., Yang, Z., Wang, K., Liu, J.: Terahertz image super-resolution based on a deep convolutional neural network. Appl. Opt. 58(10), 2731–2735 (2019)

    Article  Google Scholar 

  20. McClatchey, K., Reiten, M., Cheville, R.: Time resolved synthetic aperture terahertz impulse imaging. Appl. Phys. Lett. 79(27), 4485–4487 (2001)

    Article  Google Scholar 

  21. Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  22. Moeller, M., Möllenhoff, T., Cremers, D.: Controlling neural networks via energy dissipation (2019). https://arxiv.org/abs/1904.03081

  23. Munson, D.C., Visentin, R.L.: A signal processing view of strip-mapping synthetic aperture radar. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2131–2147 (1989)

    Article  Google Scholar 

  24. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  25. Plötz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  26. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 38(7), 1439–1451 (2016)

    Article  Google Scholar 

  27. Siegel, P.H.: Terahertz technology. IEEE Trans. Microw. Theory Tech. 50(3), 910–928 (2002)

    Article  Google Scholar 

  28. Skolnik, M.I.: Radar Handbook. McGraw-Hill Book Co., New York (1970)

    Google Scholar 

  29. Standard, M.: Photographic lenses (1959). http://www.dtic.mil/dtic/tr/fulltext/u2/a345623.pdf

  30. Tewari, A., et al.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  31. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  32. Wong, T.M., Kahl, M., Haring Bolívar, P., Kolb, A.: Computational image enhancement for frequency modulated continuous wave (FMCW) THz image. J. Infrared Millimeter Terahertz Waves 40(7), 775–800 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tak Ming Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, T.M., Kahl, M., Haring-Bolívar, P., Kolb, A., Möller, M. (2019). Training Auto-Encoder-Based Optimizers for Terahertz Image Reconstruction. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics